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Abstract:

The aim of this paper, is to study electrical cardiography problem. Thus, we construct the state space system of
this model as mathematical model. Moreover, we present some definitions and results which is described some
concepts of linear control system analysis related to this problem. More precisely, the sufficient conditions which
characterize the observability notion of linear dynamical controlled system are presented and discussed. Finally,
we prove that, the electrical cardiography model is completely observable system over finite time te [0, T].
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1. Introduction
The great progress in control science since 1955 has
change basic concept of analysis and synthesis of
control system. This progress has depended largely
on mathematical study of optimal control
systems[1 ]. Modern control theory which is based
on state space concepts is extremely useful not only
for designing a specific optimal control system but
also for improving the principle on which the system
well operate [2]. In recent years, control system
have assumed an increasing important role in the
development and advancement of modern civilization
and technology. Practically every aspect of our day-
to-day activities is affected by some type of control
system. Control system are found in abundance in all
sectors of industry, such machine-tool control, quality
of control manufactured products, automatic
assembly line, ...[3]. Considered system may be
described by the following linear dynamical form

x(t) = Ax(t) + Bu(t)

x(0) = xq

x(T)=0
where A, B are nXn and nXp matrices
(respectively), x(t)e L2(0,T; R™) is the Hilbert state
space with xe R™, u(t)e L2(0,T;RP) is the Hilbert
control space with ue R, and x(t) = Ax(t) + Bu(t)
is the state space equation with initial state
X0 € L>(0,T; R™) and final state x(T)e L?(0,T;R™).
The system is augmented by the following output
function

(51)

y(&) = Cx(¢)
(S,) Where C is nx and y(t)e L2(0,T; R9) is the
Hilbert observation space with ye R?. The systems

o s

Activation of the
ventricies

Activation of the

Racowary wane

(51)- (S,) are more general mathematical model
represent various cases [1-3].

The problem of feedback control, it is common to
think of biological systems as fragile. However, most
are very stable, and it is almost a tautology to say so,
because they must all operate in the fact of changing
and fluctuating environmental parameters; so if they
weren't stable, they wouldn't be here. We are familiar
from engineering with the concept of feedback
control whereby variables sensed and parameters are
then rest to change the behavior of the system. The
nephrons in the kidney sense Nacl concentration in
the blood and adjust filtration rate to regulate salt and
water in the body. The baroreceptor loop regulate
blood pressure, heart rate, and peripheral resistance to
adjust the circulation to different challenge.
Numerous such control systems are known and
studied in animal and plant physiology [4].
Mathematical modeling of blood flow and electric
heart activity have been researched extensively
throughout the previous decades.

There are multiple reasons for this focus. Firstly,
cardiovascular diseases are leading cause of death in
the developed part of world. Secondly, heart activity
and arterial blood flow can appropriately described
by equations already known from physics.
Consequently, the major research effort is now on the
design of efficient computer programs for obtaining
accurate approximations [5, 6].

For the untrained in mathematics, it can be unclear
exactly what a mathematics model is. In figure 1, an
approximate solution to a mathematical model of
blood flow is shown.

ANormal Heartbeat
. Fast Heartbheat
. Slow He-ar.tbeat
Irregular Heartbeat

Fig. 1: ECG of various electrocardiography with deferent heartbeat cases.
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It is a snapshot of the flow at a given time angle.
Observe that only the flow in a slice of artery is
shown. The mathematical model, and the algorithm
used to approximate a solution, independent of such
choices (time, angle, slice, etc,...) [7]. Thus the
model in figure 1 is a spatial case of general
mathematical model systems (S;)- (S;). Thus, the
same computer program can be used for any set of
choice. Consequently, very detailed studies of the
flow can be performed. Moreover, the model does not
depend on the actual geometry of the artery. Thus, the
same computer program can be used on any artery
and any patient. One can even apply modifications to
an artery and see how this change the flow. In this
way, it might be possible to predict the outcome of a
surgery without actually having to perform it. For
more dissection, see [4]. For more detailed exposition
of the mathematics and numerical solution
approaches, see [8].

The purpose of this work is to study the electrical
cardiography model and to prove that, this model is
completely observable system through state space
analysis. The outline of this, is organized as the

following:
Section 1, concerns some definitions and
characterizations in control systems. Section 2,

related to study the solution method of linear control
system and some mathematical approaches. Later
section 3, devotes the observability notion of
electrical cardiography model as control system.

2. Some definitions and characterizations in
control systems

In this section, we present some preliminaries related
to the state space analysis as in ref.s [9 — 10] and we
give some definitions and characterizations concern
linear dynamical control systems.

Definition 2.1:

State space analysis is very useful technique of
analyzing control system. It is based on the concept
of state and is applicable to linear time varying, non-
linear and multi-input multi-output systems. Thus,
representation of  higher order system become
simple.

Definition 2.2:

In general, differential equation of an nth-order
system is written by

YO + apy" () + o+ apy(t) +ay () = F(t) (1)
Which also known as a linear ordinary differential
equation if the coefficients a,, a,_4,...,a; are not
functions of y(t). In this paper, because we treat only
systems that contain lumped parameters, the
differential equations encountered are all of the
ordinary type [3]. For the systems with distributed
parameters, such as in heat-transfer systems, partial
differential equations are used [3,11 — 12].

Remark 2. 3:

Let us define
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x(0) = y(©
%0 = ¥(©)

X (1) = y" (D)
An nth-order differential equation can be decomposed
into n first-order differential equations as following
X1 (t) = x,(t)
xz(t) _ X3(t) (2)
Jkn—l(t) = xp(t)
From equations (1) and (2), we have
X (1) = y"(t) =
F(t) — apx,(t) ...— a;x.(t) =
—a;Xp (t)! -t anxn(t) + F(t)
Because, in principle first-order differential equations
are used in the analytical studies of control systems.
Notice that, the last equation (3) is obtained by the
highest-order derivative term in equation (1) to the
rest of the terms. In control systems theory, the set of
first order differential equations in (3) is called the
state equations, and x4, x,, ..., x,, are called the state
variables.
Remark 2.4:
The state of a system refers to the past, present and
future conditions of the system from mathematical
perspective, it is convenient to define a set of a state
variables and state equations to model dynamic
systems. As it turns out, the variables
%1 (8), X2 (), v, Xn (1) 4)
defined in equation (2.2) are the state variable of nth-
order system described by (1), and the nth-order
differential equations are the state equations.
In general, there are some basic rules regarding the
definition of a state and what constitutes a state
equation. The state variables must satisfy the
following conditions:
* At any time initial t = ¢t,, the state variables
x1(to), x2(to), ) Xn (to) (5)
define the initial states of the system.
* Once the inputs of the system for t > t, and initial
states just defined are specified, the state variables
should completely define the future behavior of the
system.
The state variables of a system are defined as a
minimal set of variables,
x1(8), X2 (), v, Xn (1)
Such that the knowledge of these variables at any
time t, and information on the applied input at time
t, are sufficient to determine the state of the system
atany time t > t,. Hence, the space state form for n
variables is given by
x(t) = Ax(t) + Bu(t) (6)
Where x(t) is the state vector having n rows,

X, ()
x(t) = Xz_(t)

3

X, (1)
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And u(t) is the input vector with p rows,

uq ()
u(t) — uZ:(t)
up ()
The coefficient matrices A and B are defined by
[A11 A1n]
A= : @)
_anl ann.
and
[U11 Uin]
B=]|': : )]
[ Un1 unp_
Definition 2.5:

An output of a system is a variable that can be
measured, but state variable does not always satisfy
this requirement. For instance, in an electric motor,
such variables as winding current, rotor velocity, and
displacement can be measured physically, and these
variables all qualify as output variables. In general,
output can expressed as an algebraic combination of
the state variables. For the system described by
equation (1), if y(t) is designed as the output
equation (function) is simply given by
y(&) = x,(t)

then, in general, we have

y1(t)
y@-k”kﬂW) ©)
Y (t)
where
Cll 1n
C =[ : s ] (10)
Cq1 Can
Definition 2. 6:

State space is the n-dimensional space coordinates
axis consists

Xq — axis, x, — axis, ..., X, — axis
Any state can uniquely represented by a point in the
state spaces.
Definition 2.7:
Consider the following differentiable equation

x() = f(t,x(6),u(®),—o <t<o  (11)

This equation equivalent the set of n scalar
differentiable- equation

@—”@—ﬁamm X (O, (0,

up(©)  (12)
where i =1, 2,. . .,n. The ith state variable is
represented by x;(t) and wu;(t) denotes the jth input
for j=12, .., p, is called dynamical system,
where x(t) € R™ is a state vector and u(t) € R? is
control vector and t € [0,T] < R is the time and then
f:R XR"™ XRP - R"

and
fect (),
Where
D € R XR™ XRP
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where D is the domain of the function f. For ease of
expression and manipulation it is convenient to
represent the dynamical system equations in vector-
matrix from. Let us define the following vectors:
State vector:

EAGI

x(t) = xz:(t)

[ x,, ()
Input vector:
Uy (6)]
u,(t)

_upkt)_

u(t) =

Output vector:
V1 (2]

y(o = "2

.yq(t) i
By using these vector, the n state equations of
equation (12) can be written as
x(®) = f(t,x@®),u®)) (13)
where f denotes an n x 1 column matrix that contains
the functions f; , f5, ... , f, as elements. Similarly, the
g output functions in (9) is given by
y@) = Cx(@) (14)
where C denotesa g x 1 column matrix that
contains functions C,,C;,, ...,C, aselements.
Definition 2.8:
The dynamical controlled system
x(t) = f(&x@), u®)
Is called free (unforced) dynamical system if
u(t) 20,vete(t,, ;] SR
This system can be written as follows:-
x(t) = f(t,x())
(15)_Definition 2.9:
The dynamical forced system (2.13)
x(t) = f(t,x(t),u(t))
is stationary if, we have
ftx(@®),u®) = f (x,u®) (16)
then, forallt = 0,
x(t) = fx,u@®) (17)
i.e., the function f depend implicitly on time ¢t
through u (t).
Definition 2.10:
The dynamical controlled system
x(8) = f(tx(t), u(t))
is called autonomous dynamical system, if satisfies
the following conditions:
1- free
2- stationary
thus, the system (13) is given by the form
x(t) = f(x)
Definition 2.11:
The dynamical controlled system
x() = f(t,x@®,u®)
is linear if f is linear function of x and wu. This
system is given by the following equation
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x(t) = A@®Ox() + BOut) (18)
Where
on . on
af; dxq 0xn
A(t) = (a_;)nxn =] : (19)
dxq 0xp
And
KLY K2ER
o, 0w oup |
B(t) = (a_ul,)nxp = ;o (20)
j o o
L’iul aupJ
Where i =1,..,n,j = 1,..,p and A, B

respectively are n xn, n x m matrices depending
on time t. Then, the system (18) is called linear time
varying (continuous) controlled system.
Definition 2.12:
The linear time varying dynamical controlled system
x(t) = A(t)x(t) + B(H)u(t)
Is called free (unforced) linear dynamical system if
u(t) 20,vtelty,t;] ER
This system can be written as follows:-
x(t) = AMx() (21)
Definition 2.13:
The linear time varying dynamical controlled system
x(t) = A()x(t) + B(H)u(t)
is stationary if, we have
A®)x(t) + B(u(t) = Ax(t) + Bu(t)
then for all t = 0, we obtain
x(t) = Ax(t) + Bu(t) (23)
i.e.,, the function f depend implicitly on time ¢t
through wu(t).
Definition 2.14:
The linear time varying dynamical controlled system
(18) is called autonomous linear dynamical system,
if itis:

(22)

1- free
2- stationary
Thus, the system (18) is given by
x(t) = Ax(t) (24)

Definition 2.15:
Consider linear dynamical controlled system with
initial state and final state described by the following
state space equations

x(t) = Ax(t) + Bu(t)

x(0) = xq

x(T) =0
augmented with the output function

y(@©) = Cx(t) (26)

Where C is g X n matrix. The systems (25) — (26)
are said to be observable, if for unknown initial state,
there exists a finite t = 0 such that the knowledge the
input u(t) and the output y(t) over [0, T] suffices to
determine uniquely, the initial state x(0).
Otherwise the systems (25) — (26) are called un
observable system.

(25)
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Definition 2.16:
The systems (25) — (26) are completely observable
system, if for every initial state x, , there exists time
t = 0 such that, the knowledge of the input u(t) and
the output y(t) suffices to determine uniquely, the
initial state x,.
Definition 2.17:
For linear dynamical systems (25) — (26), the
observability matrix M(0,T) is defined by the
following formula
M(0,T) = fOTeA*(T—T)C*CeA(T—T) (27)
Where e4T=? isn x n matrix and, C isn x m,C* is
the conjugate transpose of B and e4 ™~ s the
conjugate transpose of 479,
Definition 2.18:
The matrix M (0, T) is called positive definite if
<M@O,T)x,x>>0,VvxeR"x #0 (28)
and is called positive semi-definite if
<M(0,Tx,x>=0,VxeR" (29)

i.e.,, 3x # 0, such that

<MO0,Tx,x>=0

2.2. State transition matrix

This sub-section related to recall some definition and
characterization as in [5].
Definition 2.19:
The state transition matrix is defined as matrix that
satisfied the linear free dynamical system.

x(t) = Ax(t) (30)
If @(t) be nxn matrix that represents the state
transition matrix, then

@(t) = Ad(t) (31)
Let x(0) is the initial state at t = 0. Then & (t) also
defined by the matrix equation

x(t) =@ (t)x(0) (32)

Which is the solution of the free linear dynamical
system (31) fort = 0.
Remark 2.20:
To find state transition matrix, we use (Laplace
transform approach) to find @ (t), we take Laplace
transform on both sides of system (30), we have

SX(s) —xy =AX (s)
thus, we obtain

SX(s) —AX (s) = x,

and then
X($)[SI — A] = x,
therefore, we can get

L(x(s)) = ((SI —A) ™) x(0)
Where assumed that matrix (SI — A) is non-singular
(That means det.(SI —A) #0). By taking the
inverse of Laplace transform on both sides of the
equation
L7 L(x(s)) = L7Y((SI — A) ) x(0)
we have,

x(t) = LY ((SI—A4A)YHx(0), t=0 (33)
Comparing equation (32) with equation (33), the state
transition matrix is defined by

@)= LI((SI-A)t=e4 (34)
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then, we have from eq. (33) and eq. (34), the
solution of linear free dynamical system (30) given
by the following formula [5]:

x(t) = @ (£)x(0) = e4t x(0)
3. Mathematical Method
In this section, we discuss the solution method of
linear control system and some mathematical
approaches as in ref.s [9 — 10].
3.1. The method of solution
Consider the system described by the state space
equation

x(t) = Ax(t) + Bu(t)
Augmented with output function
y@®) = Cx(®) (37)
Where A, B and C are respectively n X n,n x m and
q X n constant matrix. The problem is to find the
solution excited by initial state x(0) and the input
u(t). Thus, the solution hinges on the exponential
function of A, we need
At _ At _ At
pr et =Ae = eA

To develop the solution of system (36),then, we

multiply (36) by e~4¢, we have
e A% (t) — e Ax (t) = e 4 Bu (t)
this implies
d
T (e74t x (t)) = et Bu(t)
By integration the above equation from 0 to t yields

et x(t)— x(0) = jt

e Bu(r)dt
0
Because the inverse of e ™4t is e4* and e° = I, then,
we have
x (t) = ex(0) + foteA(T'T) Bu(t)drt
(38)
Therefore, x(t) in equation (38) is the solution of
the system (36) (see ref.[10]).
Remark 3.1:
The systems (36) — (37) is completely observable if
Vx, # x; ER"
Initial states imply that, the output functions
Vo) # y.(6)
3.2. Characterization of observable system
The observability notion of the linear dynamical
controlled system in ref.s [9,10] can be developed in
anew way by the following result:
Theorem 3.2:
The linear dynamical system
x(t) = Ax(t) + Bu(t)
x(0) = x,
x(T) =0
with output function
y(®) = Cx(t) (40)
is completely observable to zero over [0,T]...
®
<> The observability matrix M (0, T) is invertible ...
2
<> The observability matrix M(0,T)is positive
definite ... 3

(35)

(36)

(39)
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Now, we prove this theorem by the following way
@=02=>0=0

for achieve the observability of cardiography model.
Proof:
@)=
If the observability matrix M(0,T) is positive
definite, to prove that M(0,T), is invertible. Now, if
M (0, T) is positive definite, that means

< M(0,T)xg, %9 >> 0,V x5 # 0

and
< M(0,T)x9,x9 >> 0, if xo=10

Since the matrix M (0, T) is positive definite, then, the
matrix M(0,T) has no zeros eigenvalues, and if
M(0,T) has no zeros eigenvalues, that means, the
determinant of M(0,T) =+ 0, Therefore, M(0,T) is
invertible [9].
Proof :
=0
If M(0,T) is invertible, to prove that, the system (39)
together with output function (40)

(J'C(t) = Ax(t) + Bu(t)

x(0) = x(0)
{ x(T)=0 (41)
y(©) = Cx(t)

is completely observable over [0,T]. We know that,
the solution of the linear free dynamical system (39)
x(t) = Ax(t)
is given by
x(t) = @ (t)x, = et x,
and
y(t) = Cx(t) = Ce?t x,
Now, we can calculate

T
M(0,T)x, = J
0
and since, the observability matrix M(0,T) is

invertible, then, we can evaluate the initial state by
the following form

e T=0C*CeAT=D x dt

T
xo = M(0, T)'lf eA T Cy(r) dt
0

and if, we choose
Xo F X1
then, we have
Yo(©) # y1(¢)

where the output functions y, (t), y,(t) are given by:

Yo(t) = Ce™t x,
and

y1(t) = Ce?t x4
Then by remark (3.1), the linear dynamical system
(41) is completely observable over [0, T].
Proof:
=0
If the system (41) is completely observable over
[0,T], to prove that M(0,T) is positive definite. We
can calculate
<M(@0,T)xg,x9 >=

T
<J- e T=0 c*CeAT-Ddr x4, x,
0

>
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T
=J- < AT C*CeAT Dy, xo > drT
0

T
f < CeAT=D x,,CeAT=D x, > dr
0

T
f<m@%m>w

T
=fuanmzo
0

= M(0,T) is positive semi definite.
Since the system (41) is completely observable over
[0,T], then

Vxy # x, ER",3u:[0,T] > R"
such that
Yo(t) # y1(t)

That means

Ix, # 0 implies y,(t) # 0,

and hence
T

< M(O, T)XO,XO >= f
0
Finally, M (0, T) is positive definite m.

llyo(@lI?dz >0

The sufficient condition to characterize observable
system is given by the following result:
Theorem 3. 3:
The linear controlled system (41)
x(t) = Ax(t) + Bu(t)

x(0) = x(0)
x(T) =0
y(@©) = Cx(t)

is completely observable over [0, T], if the

rank (C*,A*C*,  A”C*, .., A" DC*) = n
Proof:
If the rank of the following matrix

(cr,arc*, A%C*, ..., AW DC) = n,

to prove that, the system (41) is completely
observable over [0,T]. Now , if the system (41) is
not observable over [0,T]. That is means, the
observability matrix M (0, T) is not positive definite.
By using the previous theorem 3.2, and if we choose
xo # 0, then, we have

T
< M(0,T)xy,xg > = f ||Ce“‘(T'T)xO||2 dr =0
0

thus, put s =T — 1, implies that

Ce’®xy =0, Vs€[O,T]
By deriving the above equation multiple once, we
have

CAe*xy =0, Vs€[0,T]

CA%? e%x, =0, Vs€[0,T]

CAM=D g4y, =0, Vse€[0,T]
Put s = 0, we have
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ClL,xy = 0 implies XC*=0
by multiply both sides of above equation A, we obtain
CAx, =0 implies x,*A*C* =0

CAM™ Dy, = 0implies  x,* A" V¢ =0

= rank (C*,A*C*, A”C*,..,A" D) = 0
This is (Contradiction), Because,

rank (C*,A*C*, A°C*,..,A"DC*) = n
Therefore, the system (41) is completely observable
over [0,T] m.
4. Application to Cardiography Model
In this section, we give a physical model as
dynamical system and by using state space analysis
transform this model to linear control observable
system.
4.1. The physical model
The field of medicine that deals with study of heart is
called cardiology as in ref.[13], the nature and effects
of vibrations of the heart as pumps blood through the
circulatory system of body are a great source of
mathematical application as. An important aspect
involves the recording of such vibrations known as
cardiography model as in figure 2.

The instruments that records such vibrations is called
electrical cardiography (E.C.G) (figure 3) which is
discovered by the scientist Willem Einthoven in
1902.

e
Fig. 3: Depicting W. Einthoven recording his first
ECG in 1902 by placing limbs in buckets of
conducting solution.

It translates the vibrations into electrical impulse
which are then recorded (see the modern ECG in
figure 4).

P —
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Sinoatrial node
Atrioventricular node

-
ST segment
PR s
interval
QT interval

Time(s) 0 0.2 0.4 0.6

0.8

P = Atrial depolarization
QRS = Ventricular depolarization
T = Repolarization

(b)

Fig. 4: Modern ECG with sino-vibration graph.

It is interesting to transport the heart vibrations into
mechanical vibrations instead of translating these
vibrations into electrical impulse. This can be done in
the following manner. Now, suppose that a person
rests on horizontal table which has springs so that it
can vibrate horizontally, then, due to the pumping of
heart the table will undergo small vibrations, the
frequency and magnitude of which will depend
various parameter associated with the heart. Some
important conclusions about the vibrations of heart
can be drawn. Let y denote the horizontal
displacement of some specified points of the table (as
example, on end) from fixed point location (such as a
wall). Let M denote the combine mass of the person
and the portion of table which is set into motion.
If we assume that there is a dumping force
proportional to an instantaneous velocity and
restoring for proportional to the instantaneous
displacement. Then, the differential equation
describing the motion of the table is given by [13]:
2
MEXD 4 p PO 4 yye) = F(t)  (42)
Where g and y are constant of proportionality and F
is the force the system due to the pumping equation
of heart. Suppose that m is the mass of blood pumped
out of heart luring such vibrations and z is the
instantaneous center of mass of this e quantity of
blood. Then, by Newton's low, we have
Fi=m®20 43
since F(t) is the force which control the blood, then
F(t) = u(t) (44)
thus, the dynamical system of the cardiography model
becomes
a*y(t) dy(t)

M2 4+ gD 4 yy(t) = u(t) (45)
4.2. The mathematical approach
We use state space analysis to describe the physical
dynamical system given by the following system
My() +By() + yy() = u(t)  (46)
The dynamical system (46) can be transform to the
following state system given by the form

y=x
- y=Xx o
By deriving the above equations implies that
561 = xz
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h=y=-Lux-Lytuw 47

The dynamical system (4.4) given by matrix form as
following

0 1
#(t) = [_vy -M_;e] [;‘;Eg + [g]u(t) (48)

Augmented with output function
y@®]=1[0 1]x®)
4.3. The method
We can use theorem 3.3 to prove that, the linear
dynamical controlled systems (48) — (49) are
completely observable over [0, T]. Now we have.
. 1
%, () _ _ [x1(t) 0
[ o Wﬁl ) il
augmented with output function
y@®) = 1[0 1]x(®)

(49)

0
Y

we know that

0 1
A=|v —F
M M
and the conjugate transpose of A is given by
4
_° ™
A =
. P
M
thus,
c=1[0 1]
and the conjugate transpose of C is given by
«_ [0
¢ = [1]
therefore, the matrix
—-Y
O u
[C*,A*C*] = B
1 —
M

Since the determinant of ,
[C*,A*C*] # 0
Then, we have
rank [C*,A*C*] =2 =n[3].
Consequently, the system (48) together with the (49)
is completely observable over [0, T]m.
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Conclusion

We have been presented some definitions and
characterizations related to control system analysis in
finite dimensional . More precisely, the observability
problem of electrocardiography model has been
studied and anlysis. Then, the existence of sufficient
conditions which described the observability notion
in linear dynamical systems are discussed and proved.
Thus, we show that this physical model is completely
observable to zero over finite time interval te [0, T].
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