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Abstract:

In this paper, we developing new quasi-Newton method for solving unconstrained optimization problems .The
nonlinear Quasi-newton methods is widely used in unconstrained optimization[1]. However,. We consider once
quasi-Newton which is (Pearson-two) update formula [2], namely, Partial P2. Most of quasi-Newton methods
don't always generate a descent search directions, so the descent or sufficient descent condition is usually
assumed in the analysis and implementations [3] . Descent property for the suggested method is proved. Finally,
the numerical results show that the new method is also very efficient for general unconstrained optimizations [4].
Key words: Unconstrained optimization; Pearson-two QN method ; global convergence.

1.Introduction:

we consider the following unconstrained optimization This indicate that Y must be in the direction of

problem minycgn f(x) (1) S, —H.y S, —H,y #0
Where f : R®™ — R is continuously differentiable © 7K. Assume that o and that the

function. vector V satisfies V'Y« # O then it follows from (5)
Quasi-Newton method is a well-known and useful V=S . )
method for solving unconstrained and (6) that, and put we put ¥ in (6) we obtain
convex programming and the BFGS method is the  the following updating formula

most effective quasi-Newton type methods for H —H 45 -Hy)se (D)

solving unconstrained optimization problems from : St Y,

the computation point of view. For the current iterate Which called Pearson-two (P2) formula [5] .1t is easy
xx € R" and symmetric positive definite matrix  to see P2 is not symmetric . The main drawback of
By € R™", the next iterate is obtained by the Pearson -two QN update (P2) in general does not
Xpe1 = X Hogd (2)

where oy > 0 is a step-size obtained by a one-
dimensional line search, and

di = —B'VE(x)  (3)

Is a descent direction B! being available and
approximating the inverse of the Hessian matrix of f

k+1

retain the positive definiteness of He hence , the
search directions generated by them in general not
descent directions to over to this drawback , in the
following section we will introduce new type of
algorithms based on Pearson-two QN optimization
techniques called partial Pearson -two (PP2) methods

at xi. throughout this paper, we use || to denote  \yg end this section with PP2 QN algorithms.
Euclidean vector or matric norm and denote Vf(x,)  Algorithm (Pearson-two QN method) [6],[7].
by gy - step 1: Given initial point X € R" and a positive

2. Rank-One Quasi-Newton Methods. . H. eR™ ~
As we have seen the key points of the QN methods js ~ definite matrix ™ .Let £>0 and set k=0.

to generate He by means of QN equation. In this Step 2: calculate 9:=9(%) test a criterion for

section we introduce Pearson-two update that satisfies stopping the iterations for example o] <#  then stop
the quasi -Newton equation. otherwise let 9 =—H:9: and continue with step3.
Let Tbe the inverse Hessian approximation of the Step 3: calculate step length %< such that wolf
K —1th jterations. We try updating Mxinto M« je.  condition

H. ,=H,+E, 4 f(x +ad,) < f(x) +pagid,

. L and satisfied .
Where usually E, is a matrix with lower rank. In the

case of rank- one, we have Step 4: set Xioa =X F %y
H,,=H, +w™ © Step 5: calculate 9k
uveR" Step 6: Test a criterion for stopping the iterations , for
Where ™ by QN equation we obtain lo <&
example 1=k then stop.
Hk+1yk:(Hk+uvT)yk:Sk H d,,=-H.g
That is Step 7: update "« P2 let "k KTkt

vy Ju=s, —H,..y, (6) Set k:k"'lgotosteps.
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3. Partial Pearson-two (PP2) Quasi-Newton
Methods

This section is concerned with developing partial
Pearson-two QN methods for solving unconstrained
optimization problem defined in equation (1) , where

the objective function f():X€R" s continuously
differentiable and bounded from below , starting from

an initial point X anda position definite matrix H,.
The classical Pearson-two QN method with line
search is as follows

X=X, +od, (8
Where
d1=_H191
And
dk+1=_Hk+1gk+1 ©)

Where Hya defined in equation

_ T
Ho =H, + (S, t'kyk)vk (10)
Vie Y
therefore ,

s, —H .y vy
dia =-TH, +(I<T7kyk)k]gk+1
k Yk

Or

a

1
(Sk_Hkyk)] )

T
Vk gk+l
T
k

Ay =1H 9y +
K

Since
H 9. =H 9w —H 9 +H, 9,
H.9,,,=H,y,+H,9, (12)
from equations (11) and (12) we get

T T

ViGka o Vi Gka y
T T

Vi Yk Vie Vi

(13)

Oy =—[H Vi +H g + Vil

Or

v, vy
i, =-H, 9, +(1_%)Hkyk +%sk]

Vk k k Jk
We call the algorithms defined by equation (9) and
(13) general partial Pearson-two (PP2) algorithms

where Vi =S<. At this summarize the proposed

general partial Pearson-two algorithm as follows:
algorithm ( Partial Pearson-two QN method)

step 1: Given initial point X € R" and a positive
definite matrix 1 €R™" Let £ >0 andset K <1,
Step 2: calculate 91 test a criterion for stopping the

iterations, if satisfied o] <&

d,

, then stop otherwise let
=~H.0: and continue with step3.

Step 3: calculate the step size “ such that Wolfe
conditions
f(x +ad) < f(x,) +pagd,
And
dkTg(Xk +taod,) 2 O-dkTgk
satisfied .

Step 4: set Xt = % T @y
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Calculate 9k, fa
Step 5: Test a criterion for stopping the iteration, if
satisfied stop otherwise go to step 6.

;
Step 6: Calculate search direction if ViYi*0
compute search direction from equation (12) with

V=5go to step?
dyy=-H

H

Otherwise kG go to step 3.

Step 7: update ''*+tvia equation (10) with V as in

step 6. set K=K+1 gotostep 3.

4. Analysis of the Partial Pearson-two (PP2).
In this subsection we will analysis the partial Pearson
—two (PP2) algorithm. Throughout this section we

will assume that the objective function f(x) is twice
continuously differentiable and denote its matrix of

second derivatives by G(x) . The starting point of the

PP2 algorithm is X and we define the level set.
D={xeR": f(x) < f(x)}

Where f(x) is uniformly convex on D, which
implies that f has a unique minimizer X in D
Assumption (A):

The level set D is convex and there exists positive
constants Mand M such that

mHsz <7'G(x)z< MHZH2

Forall x€D and Z€ R"

The gradient of the () is Lipschitz continuous
ie 3L >0 sych that
loC-gl<lx-y| vx,yeD
An immediate consequence of assumption
(A.1) is that if we define

o (14)
G :J.G(xk +15,)dr
0
Then we have _
Ve =68y 5ng G Vi =8 (19
Which implies
myfs|® <yTs, <Myfs| (0
And

mily[* <y's <Myt &P

We will denote ¢ by the angle between the steepest

descent direction ~ 9k and displacement Sk hence
~als, =[g.lls Jcoso (19)
As a sequence of the Wolfe conditions,
f(x +ad) < f(x,) +pag.d,
And
dkTg(Xk tad,) 2 UdkTgk

The angle kaill determine important properties
about the length of the displacement and decrease in
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the function per step. Many of these conditions have
been proved see [8].

In the following theorems we will show that partial
Pearson-two (PP2) generates conjugate direction and
satisfies descent property.

Theorem (4.1)

For positive definite quadratic functions the partial
Pearson-two (PP2), with inexact line search generates
conjugate search directions

i.e

dkT+1yk =—9L15k

Proof:

Consider the search direction defined by equation

(13) with ¥ = S«
sy st
dys =—H, g, —(1—%)Hkyk —@
k Yk Sk Y
Since for position quadratic function, the equation
(15) istruei.e

Sk

Gilyk =H,y, =5,

Therefore
s/ s
dk+1 — _Hkgk + kTgk+1 Hkyk _ kTgk+l sk
k Yk S Y
yT
Multiply both sides by 7k
T
sk gk+l

deaVs =—OraH Yy + Ve HeYi =S¢ 9

T
k

T T T T
= =08k Sk Gar — Sk Gk = =Sk Gk

Theorem (4.2)

k

Suppose that % satisfies the Wolfe conditions
f(x, +ad) < f(x) +pag,d,
And
d g(x +ead) > od g,
in the PP2 algorithm, if ~OraHi 9 < 9caHi9is then

the search directions generated by PP2 algorithm are
descent i.e
d,9, < 0, vk
Proof:
H =

Since I and 91 = H19: then

legl :_HngZ <0

Suppose
L gT .. V=S8
Multiplying (13) by Fx with k, we have
ST ST 2
g-kr+1dk+1 = _g-kr+1Hkgk - (l_ kTgktl)g:ﬂHkyk _M
Sk Yk Sk Y

Note that: 0< p<1
By the Wolfe condition

f(x,+ad,) < f(x.) +pagid,
SI Yo = Slgm _Sggk 2 (p_l)slgk >0

T T T T
Sk Yk = Sk 9ksr =Sk Ok = Sk Yk

T
Sk Gk 1
Sy Vi

Then
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ngHkyk = g:ﬂHkgkﬂ - g:ﬁHkgk < g:+1Hkgk+1
Therefore
sT 2
dkT+19k+1 < —thkgm + g.kr+1Hkgk+1 —M <0-
S Vi
_ (SI gkﬂ)z < O
S Yk
To prove the global convergence of PP2 algorithm,
we use the following algorithm, due to Zoutendijk.
Theorem ( Zoutendijk)

Consider any iteration of the form (8) where dy is a
descent direction and “<satisfies the Wolfe
conditions
f(x +ad,) < f(x) +pagd,
And
d o(x +ad) > od, g,
f is bounded below in R" and

Suppose that
assumption (A) hold then

icos2 0|9, <o --.(19)
k=1
Proof (see Zoutendijk) [9].

Inequality (19) implies that
cos?dg,|* — 0

This limit can be used in turn to derive global
convergence results for line search algorithms.

5. Numerical experiments.

In this section we report numerical experiments of the
proposed method (partial Pearson-two) and classical
Pearson-two Quasi-Newton method. Our experiments
are performed for 52 non-linear unconstrained
optimization problems (functions) in the CUTEr
library [10]. Each test problem is made ten
experiments with the number of variable 100,200,...,
1000, respectively. In table (1) method examined in
our experiments

Table (1) method examined in our experiments

n. | Method name Description
1 PE Pearson two QN method
2 PPE Partial Pearson two QN method
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In the line search Procedure, the step-size P is
chosen so that the Wolfe conditions
f(x, +ad,) < f(x) +pagld,
And
dkTg(Xk +a,d,) 2 GdkTgk
Are satisfied with #=0-1 and o =0.9 The stopping

-6
criterion was o] <10

In this work, we used three codes; where two of the
codes are programmer by visual Fortran. The first
code was developed by Andrie [11] and improved by
Donal and more. The second code developed by
Andrei [12] which uses CG algorithms, we improved
this code and adapted by using QN algorithms. We
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developed the third code wing Matlab for results and

graphic comparisons.
Table (2) gives the total number of iterations (toit),

the total number of function evaluations (tfn) and
total time (totime) for solving 520 test problems.

Table (2) comparison between P2 and PP2

n. | Name of Algorithm Toit Tfn Totime
1 P2 118805 | 416325 | 134500
2 PP2 108941 | 376206 | 122428

In this Figures (1-3) we adopt the performance
profiles by Donald and More [13] to compare the

two and partial P
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performance based on the number of iterations and
CPU time. That is, for each method, we plot the

fraction # of problems for which the method is
within a factor tao of the best result. The left side of
the figure gives the percentage of the test problems
for which a method is the best result, the right side
gives the percentage of the test problems that are
successfully solved by each of the methods. The top
curve is the method that solved the most problems in
a result that is within a factor tao of the best results.
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Figure (2) comparison between (P2 and PP2) based on Function evaluation
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Figure (3) comparison between (P2 and PP2) based on Time

6. Conclusion:

In this study a Partial Pearson-two (PP2) QN method
developed for solving large-scale unconstrained
optimization problems, in which the Pearson-two
(P2) update based on the modified QN equation have
applied. An important feature of the proposed method
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