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Abstract:  
In this paper, we developing new quasi-Newton method for solving unconstrained optimization problems .The 

nonlinear Quasi-newton methods is widely used in unconstrained optimization[1]. However,. We consider once 

quasi-Newton which is (Pearson-two) update formula [2], namely, Partial P2. Most of quasi-Newton methods 

don't always generate a descent search directions, so the descent or sufficient descent condition is usually 

assumed in the analysis and implementations [3] . Descent property for the suggested method is proved. Finally, 

the numerical results show that the new method is also very efficient for general unconstrained optimizations [4]. 

Key words: Unconstrained optimization;  Pearson-two QN method ; global convergence. 

1.Introduction: 
we consider the following unconstrained optimization 

problem minx∈Rn f(x)    (1) 

Where f : Rn   →  R is continuously differentiable 

function. 

Quasi-Newton method is a well-known and useful 

method for solving unconstrained  

convex programming and the BFGS method is the 

most effective quasi-Newton type methods for 

solving unconstrained optimization problems from 

the computation point of view. For the current iterate 

xk ∈ Rn and symmetric positive definite matrix 

Bk ∈ Rn×n, the next iterate is obtained by  

xk+1 = xk + αkdk     (2) 

where αk > 0 is a step-size obtained by a one-

dimensional line search, and  

dk = −Bk
−1∇f(xk)    (3) 

Is a descent direction Bk
−1 being available and 

approximating the inverse of the Hessian matrix of f 
at xk. throughout this paper, we use  to denote 

Euclidean vector or matric norm and denote ∇f(xk) 

by gk . 

 2. Rank-One Quasi-Newton Methods. 
As we have seen the key points of the QN methods is 

to generate 1kH
 by means of QN equation. In this 

section we introduce Pearson-two update that satisfies 

the quasi -Newton equation. 

Let kH
be the inverse Hessian approximation of the 

thk   iterations. We try updating  kH
into 1kH

  i.e.  

1k k k
H H E


   

(4) 

 Where usually kE
 is a matrix with lower rank. In the 

case of rank- one, we have  

1

T

k k
H H uv


 

 
(5) 

Where 
nRvu ,

 by QN equation we obtain  

        1
( )T

k k k k k
H y H uv y s


    

That is  

1
( )uT

k k k k
v y s H y


 

     
(6) 

This indicate that u  must be in the direction of 

kkk yHS 
. Assume that 

0 kkk yHS
 and that the 

vector v satisfies 0k

T yv , then it follows from (5) 

and (6) that, and put we put ksv 
 in (6) we obtain 

the following updating formula 

  
1

( )sT

k k k k
k k T

k k

s H y
H H

s y



 

 

(7) 

Which called Pearson-two (P2) formula [5] .It is easy 

to see P2 is not symmetric . The main drawback of 

the Pearson -two QN update (P2) in general does not 

retain the positive definiteness of kH
 hence , the 

search directions generated by them in general not 

descent directions to over to this drawback , in the 

following section we will introduce new type of 

algorithms based on Pearson-two QN optimization 

techniques called partial Pearson -two (PP2) methods 

. We end this section with PP2 QN algorithms. 

Algorithm (Pearson-two QN method) [6],[7]. 

 step 1: Given initial point 
nRx  and a positive 

definite matrix 
nnRH 1 . Let 0  and set 0k . 

Step 2: calculate )( 11 xgg   test a criterion for 

stopping the iterations for example 
kg

, then stop 

otherwise let 111 gHd   and continue with step3. 

Step 3: calculate step length k
 such that wolf 

condition  

            )(    ) (   k

T

kkkk dgxfdxf    

and satisfied . 

Step 4: set kkkk dxx 1   

Step 5: calculate 1kg
  

Step 6: Test a criterion for stopping the iterations , for 

example 
kg

 then stop. 

Step 7: update 1kH
 ,P2 let 11   kkk gHd

 

Set 1 kk go to step 3. 
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3. Partial Pearson-two (PP2) Quasi-Newton 

Methods 
This section is concerned with developing partial 

Pearson-two QN methods for solving unconstrained 

optimization problem defined in equation (1) , where 

the objective function 
nRxxf ),(  is continuously 

differentiable and bounded from below , starting from 

an initial point x  , and a position definite matrix 1H . 

The classical Pearson-two QN method with line 

search is as follows  

1k k k k
x x d


 

 
(8) 

Where  

            1 1 1
d H g                                                  

And 

1 1 1k k k
d H g

  
 

 
(9) 

 

Where 1kH
  defined in equation 

k

T

k

T

kkkk
kk

yv

vyHs
HH

)(
1




 (10) 

therefore , 

11 ]
)(

[ 


 k

k

T

k

T

kkkk
kk g

yv

vyHs
Hd

 

 

Or 

)]([ 1

11 kkk

k

T

k

k

T

k

kkk yHs
yv

gv
gHd  



 

(11) 

Since  

         1 1k k k k k k k k
H g H g H g H g

 
    

1k k k k k k
H g H y H g


 

           
(12) 

from equations (11) and (12) we get  

][ 11
1 kk

k

T

k

k

T

k
k

k

T

k

k

T

k
kkkkk yH

yv

gv
s

yv

gv
gHyHd 

 

  

(13) 

Or 

])1([ 11
1 k

k

T

k

k

T

k
kk

k

T

k

k

T

k
kkk s

yv

gv
yH

yv

gv
gHd 

     

We call the algorithms defined by equation (9) and 

(13) general partial Pearson-two (PP2) algorithms 

where kk sv 
. At this summarize the proposed 

general partial Pearson-two algorithm as follows: 

algorithm ( Partial Pearson-two QN method) 

step 1: Given initial point 
nRx   and a positive 

definite matrix 
nnRH 1 . Let 0  and set 1k . 

Step 2: calculate 1g  test a criterion for stopping the 

iterations, if satisfied  
kg

, then stop otherwise let 

111 gHd   and continue with step3. 

Step 3: calculate the step size k
 such that Wolfe 

conditions 

            )(    ) (   
k

T

kkkk
dgxfdxf    

And  

                 ) (     
k

T

kkkk

T

k
gddxgd    

  satisfied . 

Step 4: set kkkk dxx 1   

Calculate 1kg
, 1kf

 

Step 5: Test a criterion for stopping the iteration, if 

satisfied stop otherwise go to step 6. 

Step 6: Calculate search direction if 0k

T

k yv  

compute search direction from equation (12) with 

ksv 
go to step7 

Otherwise 11   kkk gHd
, go to step 3. 

Step 7: update  1kH
via equation (10) with  v  as in 

step 6 . set 1 kk  go to step 3.        

4. Analysis of the Partial Pearson-two (PP2). 
In this subsection we will analysis the partial Pearson 

–two (PP2) algorithm. Throughout this section we 

will assume that the objective function )(xf  is twice 

continuously differentiable and denote its matrix of 

second derivatives by )(xG . The starting point of the 

PP2 algorithm is 1x
 and we define the level set. 

 )()(: 1xfxfRxD n   

Where )(xf  is uniformly convex on D , which 

implies that f  has a unique minimizer x  in D . 

Assumption (A): 

The level set D  is convex and there exists positive 

constants m and M  such that  
22

)( zMzxGzzm T 
 

For all Dx  and 
nRz  

The gradient of the  
)(xf

 is Lipschitz continuous  

i.e 0L  such that  

yxygxg  )()(
     Dyx  ,  

 An immediate consequence of assumption 

(A.1) is that if we define  

 

1

0

)(  dsxGG kk

 

(14) 

 Then we have 

kk sGy 
 and kk syG 1

 
(15) 

 Which implies  
2

1

2

1 sMsysm k

T 
 

(16) 

And  
2

1

2

1 yMsyym k

T 
 

(17) 

 

We will denote   by the angle between the steepest 

descent direction kg
and displacement ks

hence  

coskkk

T

k sgsg 
 

(18) 

As a sequence of the Wolfe conditions, 

            )(    ) (   
k

T

kkkk
dgxfdxf    

And  

                 ) (     
k

T

kkkk

T

k
gddxgd    

The angle k will determine important properties 

about the length of the displacement and decrease in 
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the function per step. Many of these conditions have 

been proved see [8]. 

In the following theorems we will show that partial 

Pearson-two (PP2) generates conjugate direction and 

satisfies descent property. 

Theorem (4.1) 

For positive definite quadratic functions the partial 

Pearson-two (PP2), with inexact line search generates 

conjugate search directions  

i.e 

k

T

kk

T

k sgyd 11    
Proof: 

Consider the search direction defined by equation 

(13) with ksv 
 

k

k

T

k

k

T

k
kk

k

T

k

k

T

k
kkk s

ys

gs
yH

ys

gs
gHd 11

1 )1( 
 

 
Since for position quadratic function, the equation 

(15) is true i.e 

kkkk syHyG 1

 
Therefore 

k

k

T

k

k

T

k

kk

k

T

k

k

T

k

kkk s
ys

gs
yH
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gs
gHd 11

1



 

 

Multiply both sides by 
T

ky
 

1

1

11 



  k

T

kkk

T

k

k

T

k

k

T

k

kk

T

k

T

kk gsyHy
ys

gs
yHgyd

 

1111   k

T

kk

T

kk

T

kk

T

k gsgsgssg . 

Theorem (4.2) 

Suppose that k
satisfies the Wolfe conditions  

            )(    ) (   
k

T

kkkk
dgxfdxf    

And  

                 ) (     
k

T

kkkk

T

k
gddxgd    

  in the PP2 algorithm, if 111   kk

T

kkk

T

k gHggHg  then 

the search directions generated by PP2 algorithm are 

descent i.e 

01  k

T

k gd , k  

Proof: 

 Since IH 1  and 111 gHd   then  

0
2

111  ggd
T

 

Suppose 
01 k

T
gd

 or 
0k

T

k gs
 

Multiplying (13) by 
T

kg 1  with ksv 
 , we have  

k

T

k

k

T

k

kk

T

k

k

T

k

k

T

k

kk

T

kk

T

k
ys

gs
yHg
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gHgdg

2

1

1

1

111

)(
)1( 





 

 
Note that:  10    

By the Wolfe condition  

            )(    ) (   k

T

kkkk dgxfdxf    

 0)1(1   k
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T
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T
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T
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T
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T

k gHggHggHgyHg  
Therefore  
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0
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T

k
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To prove the global convergence of PP2 algorithm, 

we use the following algorithm, due to Zoutendijk. 

Theorem ( Zoutendijk) 

Consider any iteration of the form (8) where kd
is a 

descent direction and k
satisfies the Wolfe 

conditions  

            )(    ) (   
k

T

kkkk
dgxfdxf    

And  

                 ) (     
k

T

kkkk

T

k
gddxgd    

Suppose that 
f

is bounded below in 
nR  and 

assumption (A) hold then 






2

1

2cos k

k

k g …..(19) 

Proof (see Zoutendijk) [9]. 

 

Inequality (19) implies that  

0cos
22 kg

 
This limit can be used in turn to derive global 

convergence results for line search algorithms. 

5. Numerical experiments. 
In this section we report numerical experiments of the 

proposed method (partial Pearson-two) and classical 

Pearson-two Quasi-Newton method. Our experiments 

are performed for 52 non-linear unconstrained 

optimization problems (functions) in the CUTEr 

library [10]. Each test problem is made ten 

experiments with the number of variable 100,200,…, 

1000, respectively. In table (1) method examined in 

our experiments 
 

Table (1) method examined in our experiments 
 

n. Method name Description 

1 PE Pearson two QN method 

2 PPE Partial Pearson two QN method 

In the line search Procedure, the step-size k
is 

chosen so that the Wolfe conditions  

            )(    ) (   
k

T

kkkk
dgxfdxf    

And  

                 ) (     
k

T

kkkk

T

k
gddxgd    

Are satisfied with 1.0  and 9.0 . The stopping 

criterion was 
610kg
.  

In this work, we used three codes; where two of the 

codes are programmer by visual Fortran. The first 

code was  developed by Andrie [11] and improved by 

Donal and more. The second code developed by 

Andrei [12] which uses CG algorithms, we improved 

this code and adapted by using QN algorithms. We 
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developed the third code wing Matlab for results and 

graphic comparisons. 

Table (2) gives the total number of iterations (toit), 

the total number of function evaluations (tfn) and 

total time (totime) for solving 520 test problems. 
 

Table (2) comparison between P2 and PP2 
n. Name of Algorithm Toit Tfn Totime 

1 P2 118805 416325 134500 

2 PP2 108941 376206 122428 
     

In this Figures (1-3) we adopt the performance 

profiles by Donald and More [13] to compare the 

performance based on the number of iterations and 

CPU time. That is, for each method, we plot the 

fraction 


 of problems for which the method is 

within a factor tao of the best result. The left side of 

the figure gives the percentage of the test problems 

for which a method is the best result, the right side 

gives the percentage of the test problems that are 

successfully solved by each of the methods. The top 

curve is the method that solved the most problems in 

a result that is within a factor tao of the best results.

 

 

 
Figure (1) comparison between (P2 and PP2) based on Iteration 

 

 
Figure (2) comparison between (P2 and PP2) based on Function evaluation 
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Figure (3) comparison between (P2 and PP2) based on Time 

 

 

6. Conclusion: 
In this study a Partial Pearson-two (PP2) QN method 

developed for solving large-scale unconstrained 

optimization problems, in which the Pearson-two 

(P2) update based on the modified QN equation have 

applied. An important feature of the proposed method 

is that it preserves positive definiteness of the 

updates. The presented method owns global 

convergence. Numerical results showed that the 

proposed method is encouraging comparing with the 

methods Pearson-two (P2) and Partial Pearson-two 

(PP2). 
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 ( الجزئية لطريقة شبه نيوتن في الامثلية الغير مقيدةPP2)صيغة 
بشير محمد صالح خلف

1
، خليل خضر عبو 

2
، زياد محمد عبد الله 

3 

 قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة الموصل ، الموصل ، العراق  1
 العراق قسم الرياضيات ، كلية التربية الاساسية ، جامعة تلعفر ، تلعفر ،  2
 ، الموصل ، العراق قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل  3
 

 الملخص:
تعتبر طرق شبيهة نيوتن من اكثر الطرق ، ( الجزئية PP2( واسميناها بطريقة )P2في هذا البحث تم تطوير طريقة جديدة من طرق شبيهة نيوتن )

المقيدة. ، ولان اغلب طرق شبيهة نيوتن لاتولد دائما شرط الانحدار ولذلك فان خاصية الانحدار والانحدار الكافي انتشارا لحل مسائل الامثلية غير 
هي ايضا  تفرض عند تحليل وتمثيل هذه الخوارزميات. تم اثبات خاصية الانحدار في الطريقة المقترحة. والنتائج العددية تبين ان الطريقة المقترحة

 ( الاصلية.P2ة بالمقارنة مع طريقة )فعالة جداً وممتاز 
 


