Semi Ideal on Supra Topological Space

Main Article Content

Mayadah Khalil Ghaffar

Abstract

In this paper we introduces the ideal on supra  topological space and we shall discuss the properties of this space. In this space we introduces  two operators ( )  and   . A generalized set has also been introduced in this space ( )  and  .


A generalized set has also been introduced in this space  with the help of  operator

Article Details

How to Cite
Mayadah Khalil Ghaffar. (2023). Semi Ideal on Supra Topological Space. Tikrit Journal of Pure Science, 21(3), 180–183. https://doi.org/10.25130/tjps.v21i3.1013
Section
Articles

References

[1] A. AI-Omari and T. Noiri, "On ψ*-operator in ideal m-spaces", Bol. Soc. Paran. Mat. (3s) v.30 1 (2012) 53-66, ISSN-00378712 in press.

[2] D. Andrijevic, "Semi-preopen sets", Mat. Vesnik, 38 (1986), 24 – 32.

[3] T.R. Hamlett and D. Jankovic, "Ideals in topological spaces and the set operator Ψ", Bull. U.M.I., (7), 4-B(1990), 863 – 874.

[4] D. Jankovic and T.R. Hamlett," New topologies from old via ideals", Amer. Math. Monthly, 97(1990) 295 – 310.

[5] K. Kuratowski, "Topology", Vol.1 Academic Press, New York, 1966.

[6] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly 70(1963) 36-41.

[7] A.S. Mashhur, M.E. Abd EI-Monsef and I.A. Hasanein, "On pre topological Spaces", Bull. Math. R.S. Roumanie (N.S) 28(76)(1984) No.1, 39-45.

[8] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, "On supra topological spaces", Indian J. Pure and Appl. Math. 14(4) (1983), 502 – 510.

[9] S. Modak and C. Bandyopadhyay, "A note on ψ – operator", Bull. Malyas. Math. Sci. Soc. (2) 30 (1) (2007).

[10] T. Natkaniec," On I-continuity and I – semicontinuity points", Math. Slovaca, 36, 3 (1986), 297 – 312.

[11] O. Njastad," On some classes of nearly open sets",PacificJ.Math15(1965), 961–970.

[12] O. R. Sayed and T. Noiri," On supra b-open sets and supra b-continuity on topological spaces", European J. Pure and Appl. Math., vol. 3 no. 2. 2010, 295-302.

[13] R. Vaidyanathaswamy, "Set topology", Chelsea Publishing Company, 1960. Received: July, 2011