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Abstract
In this paper a new three—term Conjugate Gradient (CG) method is suggested, the derivation of the method based
on the descent property and conjugacy condition, the global convergence property is analyzed; numerical results
indicate that the new proposed CG-method is well compared against other similar CG-methods in this field.
1. Introduction.
Consider the unconstrained optimization problem : St 0,
. +—= Y

min {f(x) | xeR" } 1) ST Y,
where f is a continuously differentiable function of which shows that dk+l possesses the following
N variables. In order to introduce our new modified form:
CG-method which is a generalization of three-term ey == O+ A S =6 (9)
(Hestenes and Stiefel, 1952) (HS)-CG method. Let us
simply recall the well-known BFCG quasi-Newton
(QN) direction (Dennis and More et al.,1977). QN-
methods for solving (1) often needed the new search

which is called the three-term CG-algorithm.
(Nazareth, 1977) proposed another CG- algorithm
using a three -term recurrence formula:

VeV YeaY
) i ) . d L ==Y kIk g 4 Ttk g 1
direction d, at each iteration by : o TR, O e, B (40
d =—H.g 2 with d, =0, d,=0.
where g, = vf (Xk) is the gradient of f evaluated If f is quadratic convex function, then for any step

length ¢, the search direction generated by (10)

at the current iterate X, . One then computes the next | i )
are conjugate subject to the Hessian of the

iterate by nonlinear function f, even without exact line
X =X+ dy ©)

) o search. In the same context, (Zhang et al., 2007)
where the step size o, satisfies the Wolfe-  proposed another descent modified HSCG method
conditions with  three-term, say, ZTCG where its search

f(x, +o,d)<F(x)+8edlg, @) direction was deflnedTas: ]
s
9(x +ad,)"d, >5,d; g, ©) Ay == G + ng+1yk Sk~ ng+1 “ye (1)
Sy Yk Sy Yk

where 0<g, <1/2 and §, <5, <1, and H,, is

N 4 :
an _ap.prommatlon to {V_Zf(xk)} .Tht:-z.matrlx Hia method is that produce descent direction i.e.
satisfies the actual quasi-Newton condition 47 g, =g Hz (12)

k Yk — 7 [Mk+1

Hi1 Y = AV (6) .
. The convergent properties of (11) for a convex
where 'y, =g,., -9, , Vi =X —X A IS ascalar,  gotimization are given in (Zhang et al., 2009).
for exact QN-condition p =1. Zhang in the same paper introduced another three—

For BFGS-update, see (Al-Bayati and Hassan, 2006), tzegq_gg-mﬁthod basr:a((jj_on tt_he Dia—laii_me;ht;)d., say,
where H,,, is obtained by the following BFGS WNOSE search direction was detined by:
formula: Ois == O +

T T T T
He, =H, +(1+ ykL"KYk)SfK _skkak:HKyksk
SV SV Se Vi ()

Where d, =—0, A remarkable property of this

Iea (Vi —15) S
S, — —1ts
SI yk k SI yk ( yk k ) (13)

where d, = —g, and t> 0

There are many possibilities in choosing search
directions in this type of methods and it must be said
that there is no single choice that is superior to others

If H,_=1 (where lis the identity matrix). Then the

above BFGS method becomes the memoryless BFGS in most situations. Below we will introduce a new
method introduced by Shanno (Shanno, 1978). Inthis  formulated three term CG-method which its idea is
case the search direction d, ., can be defined as: based on two important properties, i .e. the descent

roperty and conjugacy condition.
T T ST p
dk+1 —_ QM +( ySkTgk+1 _ (l + yk yk ) k gk+1 )Sk (8)

T T
k Y SeYe o Sk Yk
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2. A New Three-Term CG-Method (New).
Consider the search direction which is suitable for
any three-term CG-type methods is defined by the
following formula:

a b
d., =— + —5S, — (14)
k+1 gK+1 S'kryk k S: ; yk
where d, =-g, and a,b are any unknown
parameters.

The main advantages for the this type of search
direction are employing the descent and conjugacy
properties, therefore we use these two different
types of theoretical properties to find the two
unknown parameters a and b.

2.1. Assume that the search direction defined by
equation (14) satisfies the sufficient descent property
i.e.

dll O =-— g-l|<—+1gk+1

multiply both sides of (14) by g, ,, to get:

T T
dT T +Skgk+1 7Ykgk+1b:7 T
k+lgk+1 gk+1gk+1 SI yk s:’ yk gK+1gk+1
or

S-II<—_I_gk+1 a-— y:Tgk+1 b =0
Si Vi Si Vi

Again, multiply both sides of the above equation by

the  scalar  parameter sTy, >0 to  get

S‘II;ngrla_y:ﬂngrl b:O’ or

b :ﬂa (15)
ylgkﬂ
Again, trying to use the conjugacy property i.e.,
dle y, = 0, in (14) and multiplying both sides of

(14) by y, , yields:

T T
T . +Yk5ka_ Y Y b=0
Kot yk gk+1yk SI yk SI yk
.
= QraYi a_y:yk b=0
k Jk
Ve Y
La=2kbagr,y, (16)
k Jk
Now, form equations (14) and (15) we have to get:
— (g:+1yk)2 SI Y (17)

Se Vi G Y = Vi Yie Sk Ok
T T T
b= Sk Giaa Sk Y, Gk Y
o7 T T T
ScYi OraYe =YY ScBea (18)
substituting a and b in equation (14), we will get the
new formulated three-them CG-method i.e.
@eay)’
S: Y g:+lyk - YI Y S: gk+1
ST gk+1 y: gk+1
S: Y g:ﬂyk - YI Y S:gm

k

dk+1 =" gk+1 +
(19)

k
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2-2. Some Remarks on The New Method.
1- If the line search is exact i.e. g, S, =0 then

the search direction in (19) reduces to the classical
HSCG search direction .

2- If the objective function is quadratic convex and
line search is exact, then g g, =0and s/ g,, =0,
hence, the search direction defined in (19) will reduce
to the classical Conjugate-Descent method since,
9y S, =0 and

(9eaY ) =(9eah 1= 9ra0k)’ =(9x0i )’ -

3. Outlines of The New Algorithm (New).
Stepl. Given an initial point and. Set

Step2. Set k=k+1 and calculate.

Step3. Check if , then stop.

Step4. Calculate step length using Wolfe line
searches (4) and (5).

Step5. Set.

Step6. Calculate and.

Step7. Calculate The search direction defined in
(19).

Step8. Go to Step2.

To show that the search directions of (19) are descent
directions:

3.1. Proposition.

Suppose that the line search satisfies the Wolfe
condition (4) and (5) then dk+1 given by (19) is a

descent direction.
Proof.

. (Ge.a¥)’

Se Vi O = Vi Yie Sk G
SO Ve i

S Vi OV = Y Vie St G
ifk = 0 then d =-g,andd, =-g,g, :—Hng2 <0
(94.1Y1) Sk G

St YikaYk =Y YiSe G

7 T T
S 9a%aY YV

T T T T

S Y OkaYk Y YiSk Ok

(gluyk )251 Ok
SI ykgIAYk _YI ykslgkﬂ
C (9xaYi) Sk Yea
SeYiTraY e =Y VSt

d;—ﬂg kil — g;ﬂ Ok
To complete the theoretical required proofs for the
new formulated three-term CG-method we have to
prove the following main property.
4. Convergence Analysis Property.
In this section, we have to prove the basic global
convergence property of the (New) proposed
algorithm under the following assumptions:
4.1. The level set S = {xe R":f(x)<f(x)}

bounded, i.e. there exists a positive constant B >0
such that, for all:

=-Oiat K

Yy

T _ T
dk+lgk+l =—0rabkat

T _ T
dk+1gk+1 =—0knlxa ™t

is
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[x|<B !

Is.]| < B, , V Xes

4.2. In a neighborhood N of S the function f is
continuously differentiable and its gradient is
Lipschitz continuous , i.e. there exists a constant
L > 0 such that:

V1 - 1) | <Lix-]
Under these assumptions on f, there exists a
constantC >0 such that [V <c forall Xes:

Iy <c, (20)

Observe that in the above assumption, the function f
is bounded below is weaker than the usual
assumption that the level set is bounded. Although
the search directions generated by (19) are always
descent directions, to ensure convergence of the
algorithm we need to constrain the choice of the step

length ¢, . Now, the following proposition shows
that the Wolfe line search always gives a lower bound
for the step length &, .

4.3. Proposition.
Suppose that d, is a descent direction and that the

gradient Vf satisfies the Lipschitz condition
V00— VE(x, ) || < Ljx—x] for all X on the line

Y Xes

segment connecting X, andX,,,, where L is a

positive constant. If the line search satisfies the Wolfe
conditions (4) and (5), then:
_@-ogld] (21
k=" 1412
L
Proof : See (Andrei et al ,2013)
To prove the global convergence we need the

following lemma (Zoutendijk, 1970).
4.4, Lemma.

Suppose that X;
assumptions (4.1) and (4.2) hold. Let X, be generated

is a starting point for which

by the descent algorithm (New) with ¢, satisfies the

Wolfe line search conditions (4) and (5) then we
have:

(9.d)? 22
Y Sk <o (22)
|,

It easy to get from Propositions (3.1) that (22) is
equivalent to the following equation:

5 lod’ ., 3
3

o’

4.5. Theorem.

Suppose that assumptions (4.1) and (4.2) holds, and
consider the new algorithm (New), where ¢, is

computed by the Wolfe line search conditions (4) and
(5) then:

ML inf|g =0 (24)
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Proof.
The prove is by contradiction we suppose that the
conclusion is not true. Then there exist a constant

r >0 such that:

laul>r (25)
since Hng;tO and with Proposition (3. 1) it follows

v k>0

that d, #0 . Consider the search direction defined
by the equation (19):

(QI 1Yk)2
d a =" 0at =
T S Y YRV S Yk
S:gkﬂ y:gkﬂ
- Y
SI Y gI+1Yk - “ (26)

Vi Yic Sk Vi
Note that the from Lipschitz condition with 0< L we
have:

1
a:scye [ViGeal = T ViV Vi0ea

1
2 L Hkaz ylgkﬂ

B Yy Vi Se Gia <L Vi Vi Vi G
Hence
Yk Yy Sk 01 2
Therefore

T T
S Yie Y Qv —

-L yk yk yk gk+1

1
Yie Yic St i 2T Ye Vi Y O = L Vi Vie Yo O

1
:(EfL)HVkHZ YZQM

58 Y Ye O — Vi Y Sk G 2 ( )Hka Ve O

Hence

k L S¢ Gi1 Vi Gt H
2
A=)l Vi 9ua

L(yl gk+1)2
A=)y i 9er
Lgeallsl | Llsellgil

HdkﬂH <|- gk+1 +

<Oyl + +
Hgk 1H (1_L2)Hka (1_L2)Hka
L[]
=1+ a| S@+ ¥
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Again for Lipschitz condition
[yl <Lsi
Therefore
_Ls
[yl
Hence
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_Ind
Lsi

1-1°
2-1°

(28)

C

( )

multiply both side of (27) by [[g,..[" to get

4
. |lg 2 .
IS SRS SRR

which is contradiction with lemma (22) , then
l'(m inf Hgk+1H =0

5. Numerical Results .

The main work of this section is to report the
performance of the new three-terms algorithm (New)
on a set of test problems. The codes are written in
Fortran and compiled with F77 (default Compiler
settings). All the tests were performed on a PC. We
selected (30) large-scale unconstrained optimization
test functions in generalized or extended form
(Bongartz et al., 1995) library. For each test function,
we have taken numerical experiments with the
number of variables n=100 and 1000 and their details
are given in the Appendix. In order to assess the
reliability of our new proposed method, we have
tested it against (Fletcher, 1978); (Shanno, 1978) and
(Zhang, et al., 2007), using the same test problems.
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The algorithm implements the acceleration Wolfe line
search conditions with 5=10*, o =0.9 and the same
stopping criterion o], <10 where ] is the

maximum absolute component of a vector.

Tables (1) and (2) show numerical results for
employing (30) test functions with four different
algorithms, namely; (FRCG; SHANNO; ZTCG,
and New) using n=100 and 1000 only; tools (NOI
and NOFG). All of these tables indicate:

n = Dimension of the problem.

NOI = Number of iterations.
NOFG = Number of function and gradient
evaluations.

In Tables ((3); (4) and (5)) we have compared the
percentage performance of the New algorithm against
the FRCG; ZTCG and SHANNO algorithms
respectively for n=100 and with respect to NOI and
NOFG taking over all the tools as 100%.

In Tables ((6); (7) and (8)) we have compared the
percentage performance of the New algorithm against
the FRCG; ZTCG and SHANNO algorithms
respectively for n=1000 and with respect to NOI
and NOFG taking over all the tools as 100%.

Table (1) Comparison between (FRCG; ZTCG & SHANNO against New ) methods for the total of (30)
Problems with n= 100

Prob. New FRCG ZTCG SHANNO
NOI | NOFG | NOI | NOFG | NOI | NOFG | NOI | NOFG

1 31 67 34 76 34 72 42 88
2 13 26 37 71 16 29 18 32
3 8 15 16 28 8 15 10 18
4 90 136 168 201 87 134 108 170
5 62 99 124 155 71 111 57 94
6 28 44 48 71 27 44 30 47
7 21 42 60 86 21 42 21 42
8 38 59 182 219 41 61 33 54
9 4 8 6 12 4 8 4 8
10 10 19 14 28 10 19 10 19
11 171 302 365 677 121 210 254 442
12 8 17 123 222 66 122 74 138
13 44 75 601 794 71 151 73 170
14 9 22 92 173 41 73 43 76
15 27 52 140 227 31 59 28 53
16 79 174 100 191 78 181 79 187
17 84 136 194 229 92 146 87 141
18 23 54 125 199 24 52 24 52
19 92 146 338 376 120 181 118 189
20 32 51 53 75 33 53 31 52
21 13 26 31 61 17 34 15 30
22 82 124 137 167 84 131 79 125
23 28 49 71 95 27 46 74 47
24 80 123 176 211 99 150 108 169
25 437 689 1047 | 1180 556 880 535 864
26 24 46 41 67 27 47 26 46
27 12 23 254 402 15 25 15 26
28 20 36 207 891 21 37 18 33
29 53 130 477 796 85 184 81 179
30 30 50 46 70 30 51 40 61

Total | 1653 | 2840 | 5307 | 8050 | 1957 | 3348 | 2135 | 3652

190




Tikrit Journal of Pure Science 21 (3) 2016

ISSN: 1813 — 1662 (Print)
E-ISSN: 2415 — 1726 (On Line)

Table (2) Comparison between (FRCG; ZTCG & SHANNO against New) methods for the total of (30)
Problems with n= 1000

Prob. New FRCG ZTCG SHANNO
NOI | NOFG | NOI | NOFG | NOI | NOFG | NOI | NOFG
1 26 53 62 115 34 70 40 87
2 13 25 16 30 13 25 17 31
3 10 20 15 31 10 20 9 18
4 315 494 804 859 342 539 324 521
5 182 303 300 362 185 305 187 316
6 342 | 9380 741 | 21790 | 318 | 8659 507 | 15041
7 27 50 69 102 30 239 38 540
8 63 99 207 244 45 71 52 84
9 4 8 6 12 4 8 4 8
10 10 19 16 30 19 31 18 29
11 419 734 481 941 263 467 278 475
12 67 124 142 250 67 122 73 140
13 67 153 611 818 68 166 73 175
14 138 240 339 622 152 268 156 277
15 27 52 84 157 24 48 21 42
16 79 171 111 207 78 179 75 181
17 337 525 744 799 342 529 335 537
18 35 85 2469 | 3258 38 90 38 88
19 360 566 1621 | 1725 | 372 587 477 765
20 36 55 59 78 31 48 37 58
21 14 28 49 95 12 24 11 21
22 212 332 378 407 236 372 247 404
23 40 65 2162 | 2610 35 58 37 60
24 331 517 804 859 333 532 321 516
25 321 494 938 998 308 474 344 544
26 79 2062 178 4558 | 110 | 2907 95 2058
27 10 20 260 384 12 24 14 27
28 19 35 1182 | 20065 | 22 39 17 30
29 130 296 279 499 114 253 286 631
30 31 55 47 72 40 62 34 57
Total | 3744 | 17060 | 15174 | 62977 | 3657 | 17216 | 14165 | 23761

Table (3); N=100
Tools | FRCG | New
NOI 100 31.14
NOFG 100 | 35.27

Table (4); N=100
Tools | ZTCG | New
NOI 100 | 84.46
NOFG 100 | 84.82

Table (5); N=100

Tools | SHANNO | New

NOI 100 77.42

NOFG 100 77.76

Table (6); N=1000
Tools | FRCG | New
NOI 100 | 24.67
NOFG 100 | 27.09

Table (7); N=1000

Tools | ZTCG | New

NOI 100 | 101.02

191

| NOFG | 100 | 99.09 |

Table (8); N=1000
Tools | SHANNO | New
NOI 100 26.43
NOFG | 100 71.79

6. Discussions.

It is clear that from Table (3) and for n=100 that
taking, over all, the tools as a 100% for the FRCG
method, the new method (New) has an improvements
about; (68)% NOI; (64)% NOFG.

It is clear that from Table (4) and for n=100 that
taking, over all, the tools as a 100% for the ZTCG
method, the new method (New) has an improvements
about; (15)% NOI; (15)% NOFG.

It is clear that from Table (5) and for n=100 that
taking, over all, the tools as a 100%, for SHANNO
method, the new method (New) has an improvements
about; (22)% NOI; (22)% NOFG.

It is clear that from Table (6) and for n=1000 that
taking, over all, the tools as a 100% for the FRCG
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method, the new method (New) has an improvements It is clear that from Table (8) and for n=1000 that
about; (75)% NOI; (72)% NOFG. taking, over all, the tools as a 100%, for SHANNO
It is clear that from Table (7) and for n=1000 that method, the new method (New) has an improvements
taking, over all, the tools as a 100% for the ZTCG about; (73)% NOI; (28)% NOFG.

method, the new method (New) has an improvements In general, These results indicate that all the four new
about; (1)% NOI; (1)% NOFG. three-term CG-methods are, in general, the best.
Appendix.
1- Extended White & Holst Function 2
3 2 P00 =206 40 =10f o+ b G -7,
f (X) = ZC(XZi - X2i—1)2 + (1_ X2i—1)
= X =[L1,..., 1.
X =[-121,.,-1.21], ¢=100 11- Extending Powell Function
2- Extended Beale function. f(x)= Z( Xy, +10x,, ¥ +5(X, , + X, f
nz i-3 4i-2 4| 1
f(x)= é(l-S_ Xpi5 (L~ Xzi))z + (2-25_ Xgi5 (1~ Xzzi))z ( Xy o — 2%, 1) +10( Xuis = Xui )4,
i=1
. % =[3-101..,3,-1,0,1] .
+(2-625— Xy (1= Xgi)) ' %, =[1,0.8,...,1,0.8]". 12- Extended PSC1 Function
3- Extended Penalty Function FO0 =2 (X2, + X5+ Xp1%)7 +8IN% (Xy14) +COS” (Xy),
f =S X+ X205 | X, =[3,-1,0,1,...,3,-1,0,1].
) 21:( ) [;‘ ! ] 13. Extended Maratos Function (c=100)
n/2
X =[L2,...n". F(X) =2 X,y +C(X5, X5 —1)°
4- Perturbed Quadratlc X, ~[1.10.1.....1.10.1]
f(x) = ix +100£z XI} 14- Extended CIliff Function.
i=1 nl2 X, _3 2
=[0,5,0,5,...,05] f(x) = Z[%J = (Xpiq = %51) +€XP(20 (X4 — Xy ),
. i=1
5-Raydan (1) Function X, =[0,-1,....0,-1].
15- Quadratic Diagonal Perturbed
6= 322 exp(x) X)) uacdretic iagon
=1 .
f(x) [ XI) + Y —xZ,
X, =[L1,...1] ; Zi1‘100
6- Hager Function % =[0,5,05....,0,9]

n 16- Full Hessian FH2 Function.
f(x)= exp(X.) —./ix ), n
) iZl:( p(x) \/_') f(X) =(X —5)"+ D> (X + X, +...t X 1),

=[11..1. =
7- Generalized Tridiagonal-1 Function X, =[0.01,0.01,...,0.01].

n-1 17-Full Hessian FH3 Function.
f(x)= Z(Xi + %, =32+ (X =X, +1)°*
i=1

n

f(x) [ixfj Zﬁ(sm X, +C0SX,),

X =[2.2,...2]
8- Generalized Tridiagonal 2 Function % =[L1.. 4
f) = ((5— 3%, — X2)X, — 3, +1)° + 18-Tridiagonal White & Holst (c=4):
2 n-1
n-1 f = 3 21 1 i 2! = 4 )
Z((S 3X —X)X —X H1+1)2 (X) ;C(X|+1+X|) +( +X|) c
- X, =[-1.2,1,...-1.2,1],
((5-3x, —x*)x, — X, +1)%, 19-Diagonal Double Boarded Arrow Up:
%, =[-1-1,...-1] Fx) =20 40 =x)"+(x -1)°
i=1
9-Diagonai3 X, =[4.0,...,4,0],
£ =X (exp(x,)-isin(x,)) 20- ARWHEAD
i=1 B n-1 n-1 ) )
v <[ f(x)_;(—4xi +3)+i§(xi +x2),
10- Extended Himmelblau Function % =ML1...,1".

21-DQDRTIC Function
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f(X) = =5)%+ D (X + X, +... 4 X 4)?,
i=1
X, =[0.01,0.01,...,0.01].
22- Fletcher (CUTE)

F()= EC(XM —-% +1- Xiz)z,
iz

x, =[0.,0.,...,0]". ¢ =100.
23- DENSCHNA Function.

nl2 n

f(x) = ngi—l + Z(Xzi—l +X) + (-1+exp(Xy))?,

X, =[8,8,...,8].
24- DENSCHNB Function.

f(x)= r:lel((xzu - 2)2 + (Xzi—l - 2)2 Xz + (% +1)2)

Xo =[L1..,1".
25-DENSCHNC Function.

f(x) = Z(_Z + X5+ X5) 7 + (-2 +exp(Xyy —1D) +X5)7,
i=1
X, =[8.8,....8].
26- Perturbed Quadratic Function
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