The Adjacency Matrix of The Compatible Action Graph for Finite Cyclic Groups of p-Power Order

Main Article Content

Mohammed Khalid Shahoodh

Abstract

Let G and H be two finites -groups, then  is the non-abelian tensor product of G and H. In this paper, the compatible action graph  for    has been considered when  and  for the two finite -groups by determining the adjacency matrix for  and studied some of its properties.

Article Details

How to Cite
Mohammed Khalid Shahoodh. (2022). The Adjacency Matrix of The Compatible Action Graph for Finite Cyclic Groups of p-Power Order. Tikrit Journal of Pure Science, 26(1), 123–127. https://doi.org/10.25130/tjps.v26i1.109
Section
Articles

References

[1] Shahoodh, M. K., Mohamad, M. S., Yusof, Y., Sulaiman, S. A, Sarmin, N. H. (2018). Compatible Action Graph for Finite Cyclic Groups of p-Power Order. 4th Int. Conf. on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018, ISBN: 978-4-909106018 C3051.

[2] Dummit, D. S and Foote, R. M. (2004). Abstract Algebra. USA: John Wiley and Sons.

[3] Sahimel, A. S. (2018). Compatible pairs of actions for finite cyclic 2-groups and the associated compatible action graph. Ph. D Thesis. Universti Malaysia Pahang.

[4] Erfanian, A., Khashyarmanesh, K., Nafar, K. (2015). Non-commuting Graphs of Rings. Discrete Mathematics, Algorithms and Applications, 7(03), 1550027.

[5] Erfanian, A., Mansoori, F., Tolue, B. (2015). Generalized Conjugate Graph. Georgian Mathematical Journal, 22(1), 37-44.

[6] Zulkarnain, A., Sarmin, N. H., & Hassim, H. I. M. (2020). The conjugacy class graphs of non-abelian 3-groups. Malaysian Journal of Fundamental and Applied Sciences, 16(3), 297-299.

[7] Alimon, N. I., Sarmin, N. H., Fadzil, A. F. A. (2017). The adjacency matrix of the conjugate graph of some metacyclic 2-groups. Malaysian Journal of Fundamental and Applied Sciences,13(2), 79-81.

[8] Khalel, N. J and Arif, N. E. (2020). Chromatic Number and Some Properties of Pseudo-von Neumann Regular graph of Cartesian Product of Rings. Tikrit Journal of Pure Science, 25(3), 135-140.

[9] Visscher, M. P. (1998). On the nonabelian tensor product of groups, Dissertation, State University of New York.

[10] Ronld B. and Jean-Louis L. (1987). Van Kampen theorems for diagrams of spaces. Journal of Topology, 26(3), 311-335.

[11] Bondy, J. and Murty, U.(1976) Graph Theory With Applications. U. S. A: The Macmillan Press LTD.

[12] Pranjali, A. S., & Vats, R. K. (2010). A Study on Adjacency Matrix for Zero-Divisor Graphs over Finite Ring of Gaussian Integer.1(4),218-223.

[13] Mohamad. S M. (2012). Compatibility Conditions and Non-abelian Tensor Products of Finite Cyclic Groups of p-Power Order, PhD Dissertation, Universiti Teknologi Malaysia.

[14] Pahade, J. K., & Jha, M. (2017). Trace of Positive Integer Power of Adjacency Matrix. Global Journal of Pure and Applied Mathematics, 13(6), 2079-2087.

[15] The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.10.0; 2018. (https://www.gap-system.org).