
Tikrit Journal of Pure Science 21 (6) 2016 ISSN: 1813 – 1662 (Print) 

E-ISSN: 2415 – 1726 (On Line) 
 

081 

Partial Davidon, Fletcher and Powell (DFP) of quasi newton method for 

unconstrained optimization 
Basheer M. Salih

1
 , Khalil K. Abbo

2 
, Zeyad M. Abdullah

3 

1 
College of Education , University of Mosul , Mosul , Iraq 

2 
College of Computers Sciences and Math. , University of Mosul , Mosul , Iraq 

3 
College of Computers Sciences and Math. , University of Tikrit , Tikrit , Iraq 

 

Abstract:  
The nonlinear Quasi-newton methods is widely used in unconstrained optimization. However, In this paper, we 

developing new quasi-Newton method for solving unconstrained optimization problems. We consider once 

quasi-Newton which is (DFP) update formula, namely, Partial DFP. Most of quasi-Newton methods don't 

always generate a descent search directions, so the descent or sufficient descent condition is usually assumed in 

the analysis and implementations . Descent property for the suggested method is proved. Finally, the numerical 

results show that the new method is also very efficient for general unconstrained optimizations. 
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1.Introduction: 
we consider the following unconstrained optimization 

problem  

               (1) 

Where    :         is continuously differentiable 

function. 

Quasi-Newton method is a well-known and useful 

method for solving unconstrained  

convex programming and the BFGS method is the 

most effective quasi-Newton type methods for 

solving unconstrained optimization problems from 

the computation point of view. For the current iterate 

       and symmetric positive definite matrix 

       , the next iterate is obtained by  

                   (2) 

where      is a step-size obtained by a one-

dimensional line search, and  

      
              (3) 

Is a descent direction   
   being available and 

approximating the inverse of the Hessian matrix of   

at    . throughout this paper, we use  to denote 

Euclidean vector or matric norm and denote        

by   . 

Although the quasi-Newton type method is known to 

be remarkably robust in practice, one will not be able 

to establish truly convergence results for general 

nonlinear objective functions, that is, one cannot 

prove that the iterates generated by this method 

approach a stationary point of the problem from any 

starting point and any (suitable) initial Hessian 

approximation. Therefore, there has been an ever-

expanding interest in quasi-Newton type methods 

since the first quasi-Newton method was suggested 

by Davidon (1959) and improved by Fletcher and 

Powell (1963) (hence the name "DFP" formula), and 

there is a vast literature on the problem of 

convergence properties of the quasi-Newton type 

method for solving problem (1).For details, see 

Refs[1], [2], [3] and references therein.  

Algorithm 1.1 (A general quasi-Newton algorithm) 

  Step 1. Given 10  ,  ,
11

 
nxnn

RHRx and 1k  

  Step 2.  If 
 

k
g

, stop. 

  Step 3.  Compute         

kkk
gHd 

 
  (4) 

  Step 4. Find a step size 
0

k


 by line search and set 

kkkk
dxx 

1  
  (5) 

Step 5. Update k
H

  into 1k
H

 such that the quasi-

Newton equation  

              
kkk

syH 
1

 holds. 

   Step 6. 1 kk  and go to Step 2.   □ 

In the above algorithm, it is common to start the 

algorithm with 
,

1
IH 

 an identity matrix or set 1
H

 

to be a finite-difference approximation to the inverse 

Hessian 
1

1



G . If 
,

1
IH 

 the first iteration is just a 

steepest descent iteration. Sometimes, quasi-Newton 

method takes the form of Hessian approximation 
.

k
B

 

In this case, the Step 3 and Step 5 in Algorithm (1) 

have the following forms respectively. 

Step 3*. Solve 

 kkk
gdB 

    for  k
d

   
 

Step5*. Update  k
B

into 1k
B

 so that quasi-Newton 

equation 
kkk

ysB 
1

 holds.   

Since the metric matrices k
B

 are positive definite and 

always changed from iteration to iteration, the 

method is also called the variable metric method. In 

the following we consider some of the most popular 

formulas for updating inverse Hessian approximation 

k
H

. 

2. Rank-Two  Update Quasi-Newton Methods. 

Other quasi-Newton methods use rank-two updates, 

i.e. the difference between two consecutive 

approximations is a matrix of rank two. The reason 

for this approach is to preserve the symmetrical 

structure of the approximate to the invers Hessian 

matrix.  It is thus not surprising that these methods 

are not meant as non-linear solvers but used to solve 

minimization problems. We will describe briefly the 

Davidon, Fletcher and Powell (DFP), for a good 

survey of these and other methods we refer to [4]. 
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3. DFP update 

DFP update is a rank-two update,   i.e., 1k
H

is 

formed by adding to k
H

two symmetric matrices, 

each of rank one, and it has the following form 

   kk

T

k

k

T

kkk

k

T

k

T

kk

k

DFP

k

yHy

HyH

ss

s
HH

y y 

1




 

    

    (6) 

The formula  

k

T

k

T

kkkk

kk

yv

vyHs
HH

)(

1






     

(7) 

 is the first quasi-Newton update proposed originally 

by 

Davidon [5] and developed later by Fletcher and 

Powell [6]. Hence it is called DFP update. 

DFP method has the following important properties: 

A. For a quadratic function (under exact line 

search) 

(a) DFP update has quadratic termination, i.e., 
1

 GH
n . 

(b) DFP update has hereditary property, i.e., 

jji
syH 

, 
ij 

. 

(c) DFP method generates conjugate directions; when 

,
1

IH 
 the method generates conjugate gradients. 

B. For a general function 

(a) DFP update maintains positive definiteness. 

(b) Each iteration requires )(3
2

nOn   

multiplications. 

(c) DFP method is super-linearly convergent. 

(d) For a strictly convex function, under exact line 

search, DFP method is globally convergent. 

The fact that quasi-Newton update retains positive 

definiteness is of importance in efficiency, numerical 

stability and global convergence. If the Hessian 

)(
*

xG  is positive definite, the stationary point x is a 

strong minimizer. Hence, we hope  inverse Hessian 

approximation k
H

 is positive definite. In addition, if  

k
H

 is positive definite, the local quadratic model of 

f
 has a unique local minimizer, and the direction k

d
 

is a descent direction. Usually, the update retaining 

positive definiteness means that if k
H

 is positive 

definite, then 1k
H

 is also positive definite. Such an 

update is also 

called positive definite update. Next, we introduce 

some important theorems related to the DFP update 

for more details see [Op. theory and methods]. 

Theorem (1.1) (Positive Definiteness of DFP 

Update) 

DFP update (6) retains positive definiteness if and 

only if 0
k

T

k
ys . 

Corollary (1.1) 

 Each matrix k
H

 generated by DFP Algorithm  is 

positive definite, and the directions kkk
gHd 

 are 

descent directions. 

Theorem 1.2 (Quadratic Termination Theorem of 

DFP Method) 

   Let 
)( xf

 be a quadratic function with positive 

definite Hessian G. Then, 

if exact line search is used, the sequence 
}{

j
s

generated from DFP method 

satisfies hereditary property, conjugate property and 

quadratic termination, 

that is, for mi ,...,1,0 ···, where m ≤ n−1, 

1. 
ijsyH

jji
,...,1,0  ,

1


 ;    (hereditary property) 

2. 
1,...,1,0  ,0  ijsGs

j

T

i ; (conjugate direction 

property) 

3. The method terminates at m+1≤ n steps. If 

m=n−1,then 
1

 GH
n . 

For the prof of the above theorems see [Op. theory 

and methods]. 

From the theorem (1.2) we see that DFP method is a 

conjugate direction 

method. If the initial approximation  IH 
1 , the 

method becomes a conjugate gradient method. DFP 

method is a seminal quasi-Newton method and has 

been widely used in many computer codes. It has 

played an important role in theoretical analysis and 

numerical computing. However, further studies 

indicate that DFP method is numerically unstable, 

and sometimes produces numerically singular 

Hessian approximations and requires )(3
2

non 

multiplication per iteration.  

Powell in [7] analyzed the performance of the DFP 

algorithm on a very simple objective function of two 

variables. Through studying the eigenvalues of 

Hessian matrix, he found out that the DFP algorithm 

can be highly inefficient, could fail for general non-

linear problems, it can stop at a saddle point. It is 

sensitive to inaccurate linear search. 

In the next subsection will develop new method based 

on DFP and partial DFP algorithm quasi-Newton 

algorithms, to overcome these drawbacks.  

4. Partial DFP method (PDFP). 

Consider the DFP update formula defined in the 

equation (6) then the search direction based on 

equation (6) can be calculated as 

111 


kkk
gHd

 
Now  

kkkkkkkk
gHgHgHgH 

 11  

kkk
dyH 

 

kkkkk
syHgH



1

1




 

(8) 

Therefore 

11
][




k

kk

T

k

k

T

kkk

k

T

k

T

kk

kk
g

yHy

HyyH

ys

ss
Hd

 

 

][
11

1 kk

kk

T

k

kk

T

k

k

k

T

k

k

T

k

kk
yH

yHy

gHy
s

ys

gs
gH





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]

)
1

(
1

[
1

1 kk

kk

T

k

kkk

T

k

k

k

T

k

k

T

k

kkkk
yH

yHy

syHy

s
ys

gs
syHd












 

])
1

([
1

k

k

T

k

k

T

k

kk

kk

T

k

k

T

k
s

ys

gs
yH

yHy

ys






 

k

k

T

k

k

T

kk

T

k

kk

kk

T

k

k

T

k

k
s

ys

gsys
yH

yHy

ys
d







1

1








 

(9

) 

We see from equation (9) that the computation of the 

search direction 1k
d

not need any additional 

computations, since all terms in (9) have already been 

calculated during the iterations. Thus, the computing 

kk
gH

1  is reduced at each iteration, hence we can use 

only 3n
2
 multiplications per iteration instead of 

)(3
2

non  . 

At this point we summarize our algorithm (PDFP) in 

the following formal steps. 

Algorithm (PDFP) 

Step 1. Given an initial point 1
x

 and a positive 

definite matrix 1
H , set 0 , 1k . 

Step2. If 


k
g

. Stop 

Step 3. Compute search direction: 

If 1k  then  

kkk
gHd 

 

k

k

T

k

k

T

kk

T

k

kk

kk

T

k

k

T

k

k
s

ys

gsys
yH

yHy

ys
d







1

1








 

Step 4. Compute the step size k


 such that Wolfe 

conditions  

k

T

kkkkkk
dgxfdxf   )()(

,   (10) 

,)(
k

T

kk

T

kkk
dgddxg  

    (11) 

and 

,)()(
k

T

kkkkkk
dgxfdxf  

     (12) 

,0)( 
k

T

kkkk

T

k
ddxgdg 

    (13) 

with 0 < δ< 2

1

, δ < σ < 1.   

 satisfied. 

Step 5. Compute new iterative point   

            kkkk
dxx 

1    

kk

T

k

k

T

kkk

k

T

k

T

kk

k

DFP

k

yHy

HyH

ss

s
HH

y y 

1




 

Step 6. set 1 kk . Go to step 2. 

The following theorem indicates that, in the inexact 

case, the search direction k
d

 satisfies descent 

property: 

0
k

T

k
dg

. 

Theorem (4.1): 

consider the algorithm PDFP, and assume that 

k

T

k

k

T

k

kk

T

k

k

T

k

ys

gs

yHy

ys
2

1

2

)(



 , then the search direction 

generated by PDFP algorithm are descent directions. 

Proof:  

The proof is by induction for 1k  

0
2

111111
 ggHgdg

TT

 

Let 
0

k

T

k
dg

, note that, by definition of k
H

we have 

0
kk

T

k
yHy

 and by second Wolfe condition 
0

k

T

k
ys

 

1

1

111 








k

T

k

k

T

k

k

T

kk

T

k

kk

T

k

kk

T

k

k

T

k

k

T

k
gs

ys

sgys
gHy

yHy

ys
dg







 

 

k

T

k

k

T

kk

T

k

kk

T

k

k

T

kk

T

k

ys

gsgs

yHy

ysys )(
2

11

2





  

Since 

k

T

kk

T

kk

T

kk

T

k
sgsgsgsy

11 


 
Hence 

k

T

k

k

T

kk

T

k

kk

T

k

k

T

kk

T

k

k

T

k

ys

gssg

yHy

ysys
gd

)(
2

11

211






 , 

0
)(

2

11

2




k

T

k

k

T

k

kk

T

k

k

T

k

ys

gg

yHy

ys

  
The proof is complete. 

Theorem (4.2) 

The search directions generated by the equation (9) 

are conjugate directions. 

Proof: 

Consider the search direction given in equation (9): 

k

k

T

k

k

T

kk

T

k

kk

kk

T

k

k

T

k

k
s

ys

gsys
yH

yHy

ys
d







1

1








 

Multiply both sides by 

T

k
y

to get 

k

T

k

k

T

k

k

T

kk

T

k

kk

T

k

kk

T

k

k

T

k

k

T

k
ys

ys

gsys
yHy

yHy

ys
dy







1

1

)(







 

1


k

T

k
gs

 
This shows that the search directions generated by 

PDFP method are conjugate for all k  with 1t . 

5. Convergence analysis of the PDFP method: 

In order to establish the global convergence of PDFP 

method, we make the objective function: 

Assumption (A) 

(A1): The level set )}()(:{
1

xfxfRx
n

 at the 

initial point 1
x

 is bounded namely, then exists 

positive constants 1
  and 2

  such that  

 1
x

 And 2
s

 ,  x  
  (14) 

(A2):  In some neighborhood N of  , 
f

 is 

continuously differentiable and its gradient is 

Lipschitz continuous i.e there exists a constant 

0L such that  

yxLygxg  )()(
    , 

Nyx  ,
 

1
)( xg

 And 2
y

 ,  x  
(15)   

Note that, since k
H

 is symmetric and positive then 

the following is true 

yMyHyym
kk

T

k


 
  (16) 
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Where m  and M are the smallest and largest 

eigenvalues. 

The following is a useful lemma for proving the 

global convergence property of iterative methods (see 

lemma 1.1 of [8]). 

Lemma (5.1) 

 Suppose that Assumption A is satisfied. Consider 

any iterative method of the form  

kkkk
dxx 

1  
  (17) 

Where k
d

 and k


satisfy the descent or (sufficient 

descent) condition and the Wolfe conditions (10), 

(11), (12) and (13) respectively. If  








1

2

1

k
k

d
 

Then the following holds 

0inf 


k
k

gLim
 

Theorem ( 5.1 ) 

Let 
}{

k
x

 be generated by PDFP method and 

Assumption A hold. Then we have  

0inf 


k
k

gLim
 

Proof: 

The proof is by contradiction. Assume that  








1

2

1

k
k

d
 

Consider the search direction generate by PDFP 

method 

k

k

T

k

k

T

kk

T

k

kk

kk

T

k

k

T

k

k
s

ys

gsys
yH

yHy

ys
d







1

1








 
Note that by assumption A we have  

mkkk

kkk

T

k

Hys
ymyHy

  ,,,
11

22

  

and kk
sy 

, using the definitions we have 
2

12

1 k

k

T

k

k

T

kk

kk

kk

T

k

k

T

k

k
s

ys

gss
yH

yHy

ys
d










 

k

k

T

k

k

T

k

k

k

T

k
s

ys

gs
sy

ym

ys
122

2

1
1





 

2

2







 M

m

ys
k

T

k

 

2

2

2


m

sML
k



 













00

1

2

2
2

kk

k
d

m

ML






 
Hence, 

  



0
11

1


k
d  

 

 

6. Numerical results and comparisons methods  

In this subsection we present the computation 

performance of a FORTRAN implementation of the 

DFP and PDFP algorithms on a set of unconstrained 

optimization test problems. 

In this subsection we report numerical experiments of 

the proposed methods (partial DFP methods) and 

classical DFP Quasi-Newton methods. Our 

experiments are performed for 52 non-linear 

unconstrained optimization problems (functions) in 

the CUTEr library [9]. Each test problem is made ten 

experiments with the number of variable 100,200,…, 

1000, respectively.  
  

In table (1-1) method examined in our experiments 
n. Method name Description 

1 DFP Davidon- Fletcher – 

Powell QN method 

2 PDFP Partial Davidon- Fletcher – 

Powell QN method 

In the line search Procedure, the step-size k


is 

chosen so that the Wolfe conditions (10), (11), (12) 

and (13) are satisfied with 1.0  and 9.0 . The 

stopping criterion was 
6

10



k

g
 . 

In this work, we used two codes of the codes are 

programmer by visual Fortran. The first code was  

developed by Andrie [10] and improved by Donal 

and more. The second code developed by Andrei [11] 

which uses CG algorithms, we improved this code 

and adapted by using QN algorithms. We developed 

the third code wing Matlab for results and graphic 

comparisons. 

Table (1.1) gives the total number of iterations (toit), 

the total number of function evaluations (tfn) and 

total time (totime) for solving 520 test problems. 

Table (1-1) 
n. Name of 

Algorithm 

Toit Tfn Totime 

1 DFP 89665 860578 150730 

2 PDFP 64629 209701 102052 
      

In this Figures (1- 3) we adopt the performance 

profiles by Donald and More [12] to compare the 

performance based on the number of iterations and 

CPU time. That is, for each method, we plot the 

fraction  of problems for which the method is 

within a factor tao of the best result. The left side of 

the figure gives the percentage of the test problems 

for whicg a method is the best result, the right side 

gives the percentage of the test problems that are 

successfully solved by each of the methods. The top 

curve is the method that solved the most problems in 

a result that is within a factor tao of the best results. 
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Figure (1-1) Comparison between DFP and PDFP based on iteration 

 

 
Figure (1-2) Comparison between DFP and PDFP based on evaluation function 
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Figure (1-3) Comparison between DFP and PDFP  based on Time 

 

 

7. Conclusion: 
In this study a  new algorithm presented a new form 

DFP QN method developed for solving large-scale 

unconstrained optimization problems, in which the 

PDFP update based on the modified QN equation 

have applied. An important feature of the proposed 

method is that it preserves positive definiteness of the 

updates. The presented method owns with descent 

property and global convergence with the Wolfe line 

search. Numerical results showed that the proposed 

method is encouraging comparing with the methods 

DFP and PDFP. 
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 ( الجزئية لطريقة شبه نيوتن في الامثلية الغير مقيدةDFPصيغة )
بشير محمد صالح خلف

0
، خليل خضر عبو 

1
، زياد محمد عبد الله 

2 

 للعلوم الصرفة ، جاهعة الووصل ، الووصل ، العراققسن الرياضيات ، كلية التربية   1
 قسن الرياضيات ، كلية التربية الاساسية ، جاهعة تلعفر ، تلعفر ، العراق  2
 ، الووصل ، العراق قسن الرياضيات ، كلية علوم الحاسوب والرياضيات ، جاهعة الووصل  3

 

 الملخص:
وتن تعتبر طرق شبيهة نيوتن من اكثر الطرق انتشارا لحل مسائل الامثمية غير المقيدة. في هذا البحث تم تطوير طريقة جديدة من طرق شبيهة ني

(DFP( واسميناها بطريقة )PDFP الجزئية ، ولان اغمب طرق شبيهة نيوتن لاتولد دائما شرط الانحدار ولذلك فان خاصية الانحدار والانحدار )
لمقترحة هي الكافي تفرض عند تحميل وتمثيل هذه الخوارزميات. تم اثبات خاصية الانحدار في الطريقة المقترحة. والنتائج العددية تبين ان الطريقة ا

 ( الاصمية.DFPايضا فعالة جداً وممتازة بالمقارنة مع طريقة )
 


