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Abstract:

The nonlinear Quasi-newton methods is widely used in unconstrained optimization. However, In this paper, we
developing new quasi-Newton method for solving unconstrained optimization problems. We consider once
quasi-Newton which is (DFP) update formula, namely, Partial DFP. Most of quasi-Newton methods don't
always generate a descent search directions, so the descent or sufficient descent condition is usually assumed in
the analysis and implementations . Descent property for the suggested method is proved. Finally, the numerical
results show that the new method is also very efficient for general unconstrained optimizations.
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1.Introduction:

we consider the following unconstrained optimization d . =-H,g, 4

problem : ima, >0 ;

min,egn f(x) (1) Step 4. Find a step size “ by line search and set
Where f : R™ — R is continuously differentiable X = X+, d, ®)

function. Step 5. Update H. into "« such that the quasi-

Quasi-Newton method is a well-known and useful
method for solving unconstrained

convex programming and the BFGS method is the
most effective quasi-Newton type methods for Step 6. k =k +1 and goto Step 2. O

solving unconstrained optimization problems from In the above algorithm, it is common to start the
the computation point of view. For the current iterate
xx € R™ and symmetric positive definite matrix
By € R™", the next iterate is obtained by

Newton equation
H k_1yk = sk hOIdS.

algorithm with H, an identity matrix or set H,
to be a finite-difference approximation to the inverse

Xip1 = X + oyedy (2) Hessian G If _Hl :_" the firs_t iteration_is just a
where oy > 0 is a step-size obtained by a one-  Steepest descent iteration. Sometimes, quasi-Newton
dimensional line search, and method takes the form of Hessian approximation B+
di = =B V() (3) In this case, the Step 3 and Step 5 in Algorithm (1)

Is a descent direction B! being available and have the following forms respectively.
approximating the inverse of the Hessian matrix of f Step 3*. Solve

at x, . throughout this paper, we use || || to denote Bd,=-9. for U

Euclidean vector or matric norm and denote Vf(xy) Step5*. Update Bl into B« so that quasi-Newton
by gx. ) ) equation g s - y holds.

Although the quasi-Newton type method is known to K ‘

be remarkably robust in practice, one will not be able Since the metric matrices ~« are positive definite and
to establish truly convergence results for general always changed from iteration to iteration, the
nonlinear objective functions, that is, one cannot method is also called the variable metric method. In
prove that the iterates generated by this method the following we consider some of the most popular
approach a stationary point of the problem from any formulas for updating inverse Hessian approximation
starting point and any (suitable) initial Hessian H
approximation. Therefore, there has been an ever-
expanding interest in quasi-Newton type methods
since the first quasi-Newton method was suggested
by Davidon (1959) and improved by Fletcher and
Powell (1963) (hence the name "DFP" formula), and
there is a wvast literature on the problem of
convergence properties of the quasi-Newton type
method for solving problem (1).For details, see
Refs[1], [2], [3] and references therein.

B

k

2. Rank-Two Update Quasi-Newton Methods.
Other quasi-Newton methods use rank-two updates,
i.e. the difference between two consecutive
approximations is a matrix of rank two. The reason
for this approach is to preserve the symmetrical
structure of the approximate to the invers Hessian
matrix. It is thus not surprising that these methods
are not meant as non-linear solvers but used to solve

- . . minimization problems. We will describe briefly the
Algorithm 1.1 (f‘ geRnneril quz:smln-Newton algorithm) Davidon, Fletr():her and Powell (DFP), for a )g/;ood
, € s S

Step 1. Given : 1 0<e<land k=1 survey of these and other methods we refer to [4].

Step 2. If 19:1= ¢ stop.
Step 3. Compute
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3. DFP update

DFP update is a rank-two update, H

ie., k1S

formed by adding to H\ two symmetric matrices,
each of rank one, and it has the following form

s, Y, Huy vH,
P H k + T - T (6)
Sk Sk yk H kyk
The formula
s, — H i (M
Hk+1=Hk+(k Tkyk)k
vk yk
is the first quasi-Newton update proposed originally
by

Davidon [5] and developed later by Fletcher and
Powell [6]. Hence it is called DFP update.

DFP method has the following important properties:
A. For a quadratic function (under exact line
search)

(a) DFP update has quadratic termination,
H =G

i.e.,

(b) DFP update has hereditary property, i.e.,
Hy, =s, Jj<i
(c) DFP method generates conjugate directions; when

H. = 1" the method generates conjugate gradients.

B. For a general function
(a) DFP update maintains positive definiteness.

(b) Each 3n? + O (n)
multiplications.

(c) DFP method is super-linearly convergent.

(d) For a strictly convex function, under exact line
search, DFP method is globally convergent.

The fact that quasi-Newton update retains positive
definiteness is of importance in efficiency, numerical
stability and global convergence. If the Hessian

iteration requires

G(x) js positive definite, the stationary point X is a
strong minimizer. Hence, we hope inverse Hessian

H

approximation "« is positive definite. In addition, if

Ho s positive definite, the local quadratic model of

" has a unique local minimizer, and the direction d,

is a descent direction. Usually, the update retaining
positive definiteness means that if Hiis positive

definite, then ™« is also positive definite. Such an
update is also

called positive definite update. Next, we introduce
some important theorems related to the DFP update
for more details see [Op. theory and methods].
Theorem (1.1) (Positive Definiteness of DFP
Update)

DFP update (6) retains positive definiteness if and

only if Y, >0
Corollary (1.1)
Each matrix ™+ generated by DFP Algorithm is

positive definite, and the directions ®x = 9

descent directions.

< are
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Theorem 1.2 (Quadratic Termination Theorem of
DFP Method)

Let ") be a quadratic function with positive
definite Hessian G. Then,

if exact line search is used, the sequence (s}

generated from DFP method
satisfies hereditary property, conjugate property and
guadratic termination,

that is, for ' = 0L m
1 HwY, =8y 1= 00

-+, where m<n—1,

;  (hereditary property)
$/G s, =0, j=01..,i-1

2. ;  (conjugate direction
property)
3. The method terminates at m+1< n steps. If

m=n—1,then H,=GC 1.

For the prof of the above theorems see [Op. theory
and methods].

From the theorem (1.2) we see that DFP method is a

conjugate direction

method. If the initial approximation : ="' the
method becomes a conjugate gradient method. DFP
method is a seminal quasi-Newton method and has
been widely used in many computer codes. It has
played an important role in theoretical analysis and
numerical computing. However, further studies
indicate that DFP method is numerically unstable,
and sometimes produces numerically singular

2
Hessian approximations and 3n" +o0(n)

multiplication per iteration.

Powell in [7] analyzed the performance of the DFP
algorithm on a very simple objective function of two
variables. Through studying the eigenvalues of
Hessian matrix, he found out that the DFP algorithm
can be highly inefficient, could fail for general non-
linear problems, it can stop at a saddle point. It is
sensitive to inaccurate linear search.

In the next subsection will develop new method based
on DFP and partial DFP algorithm quasi-Newton
algorithms, to overcome these drawbacks.

4. Partial DFP method (PDFP).

Consider the DFP update formula defined in the
equation (6) then the search direction based on
equation (6) can be calculated as

requires

din = —H0
Now
Hi 9, =H 9, - H,. 9, +H,9,
=H,y, —d,
1 8
Ho 9, = Hyy, - —s,
a
Therefore
.
sksk Hkykyk k
de,=-[H + T T 194
S Y Y HiYy
T
S, 0y, Y. H,9,.
[Hngl+ kal _ kT k lekyk]
Y Y H Yy
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. 1
Ve (H oy, ——s,)
a

1 5,9,
dk+1:7[Hkyk775k+ k-r s, - T Hkyk]
a Sk yk kakyk
T T
s,y s g 1
k k k k+
= [ —H,y, + (- s, ]
kakyk sk yk a
T T T 9
d _ S¢ Y H S Yk a8, 9y (
k+l — T Yo T T Sk )
ay, H, Y, as, ¥y

We see from equation (9) that the computation of the

search direction ®+:not need any additional

computations, since all terms in (9) have already been
calculated during the iterations. Thus, the computing

H .19 js reduced at each iteration, hence we can use
only 3n’ multiplications per iteration instead of
3n’ + o(n) i

At this point we summarize our algorithm (PDFP) in
the following formal steps.

Algorithm (PDFP)

Step 1. Given an initial point X1 and a positive

definite matrix "+, set € >0 k=1

Step2. If o< Stop
Step 3. Compute search direction:

If k =1 then
d, =-H,9,

B
Sk Y

d T
ayk Hkyk

1

K+

Step 4. Compute the step size %« such that Wolfe
conditions

f(x, +ed)- f(x,)<d&,g,d, (10)

g(x, +a,d,)'d,[<-og,d

©(11)
and
f(x, +a,d)-f(x)<& ,g.d,. (12)
og,d, <g(x, +a,d,) d, <0, (13)
L
with 0 <6<2,86<oc<1.
satisfied.
Step 5. Compute new iterative point
X = X +a,d,
i "
HkDf:=Hk+Skyk7 kykyk k
i, YiHLY,

Step 6.set K = k +1 Goto step 2.
The following theorem indicates that, in the inexact

d

case, the search direction "« satisfies descent

property:

g[dk <0

Theorem (4.1):

consider the algorithm PDFP, and assume that

T T 2
S Yo (8094n)

@'y H LY, Se Vs , then the search direction
generated by PDFP algorithm are descent directions.

182

ISSN: 1813 — 1662 (Print)
E-ISSN: 2415 — 1726 (On Line)

Proof:
The proof is by induction for kK =1

T

9,d, = 7gIngl = 7H91H2 <0

Let 9% <0 note that, by definition of H we have

T T
YeHYe > 0 and by second Wolfe condition S+ Y« = ©

T T T
T d Sy Vi T Sy Y ~29, 1S 1
9yl =~ T YeH O+ T S 9y
cZyk}-ikyk ask yk
T T T T 2
_ Sk yk Sk yk sk gk+1 (Sk gk+1 )
- 2 T + - T
a a'y H,y, a S, Yy
Since
T T T T
YiSik = 9yiaS — 9 Sk 2 Gy.Sy
Hence
T T T T 2
T sk yk sk yk gk+lsk (Skgk+1 )
d .9 < - + -
k+19 k+1 2 T T
a a'y H,y, a S, Yo 1
T T 2
_ Sy Y _(gk+1gk+1 )<O
27 T
a y Hyy, S Y

The proof is complete.

Theorem (4.2)

The search directions generated by the equation (9)
are conjugate directions.

Proof:

Consider the search direction given in equation (9):

T T T
S Y 2594 s

S Y
T
as, 'y,

- H, .y, +
akakyk

k

:
Multiply both sides by Yito get

T T T
Sk Y« (Sk yk)_ask 9yar 7

YeH Y, + SE Y,

ay H, vy, as;y,

T
“S5 9y

This shows that the search directions generated by

PDFP method are conjugate for all K with t =1,

5. Convergence analysis of the PDFP method:

In order to establish the global convergence of PDFP
method, we make the objective function:
Assumption (A)

(AL): The level set ={xeR™:T0O< 100D} gt the

initial point *: is bounded namely, then exists
positive constants #: and #: such that

bls o png Bl e vece @4
(A2): In some neighborhood N of ¢, T s
continuously differentiable and its gradient is

Lipschitz continuous i.e there exists a constant

L > 0 sych that
laco-g|<tfx-y|] vx,yeN

lscol<r. ppg Wl=r. wxer (@9)

Note that, since "« is symmetric and positive then
the following is true

mlyl< yiHoy s mly] o (36)
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m

Where
eigenvalues.

The following is a useful lemma for proving the
global convergence property of iterative methods (see
lemma 1.1 of [8]).

Lemma (5.1)

Suppose that Assumption A is satisfied. Consider
any iterative method of the form

Xk+1

and ™ are the smallest and largest

=X, +a,d, 17)
Where %« and %« satisfy the descent or (sufficient
descent) condition and the Wolfe conditions (10),
(11), (12) and (13) respectively. If
- 1
) s
o]
Then the following holds

Lim inf ||gk|| 0

k — oo

= +4o0

Theorem (5.1)

Let {3 be generated by PDFP method and
Assumption A hold. Then we have
Lim inf ||g, = 0
Proof:
The proof is by contradiction. Assume that
1

=N
Consider the search direction generate by PDFP
method
S Yy — a8, 9,

Yt T Sk
as, 'y,

S Y
ay, H,y,
Note that by assumption A we have

1
Yo H .,y

k k

d

k+1 T

H

1
ol e s ralnids 2.
k

and lvl=s. H, using the definitions we have

2

T T
2 =S Yy Sy Sy 9
Hdk+1 = T Hoye +— - T Sy
ay, H, vy, a Sk Y
T
2 Sk 9k
L+ y + —s«] + T S,
H H Y
siy /4
e 7z+#2
am a
2
amL|fs, |
< 2
am
2ML p, id <iy:m
am k=0 k=0
Hence,
1 1
Z >Z*>O
(L
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6. Numerical results and comparisons methods

In this subsection we present the computation
performance of a FORTRAN implementation of the
DFP and PDFP algorithms on a set of unconstrained
optimization test problems.

In this subsection we report numerical experiments of
the proposed methods (partial DFP methods) and
classical DFP  Quasi-Newton methods. Our
experiments are performed for 52 non-linear
unconstrained optimization problems (functions) in
the CUTEr library [9]. Each test problem is made ten
experiments with the number of variable 100,200,...,
1000, respectively.

In table (1-1) method examined in our experiments
n. | Method name Description

1 DFP Davidon- Fletcher —
Powell QN method
2 PDFP Partial Davidon- Fletcher —

Powell QN method

In the line search Procedure, the step-size “ris
chosen so that the Wolfe conditions (10), (11), (12)

and (13) are satisfied with # =% and & =0.9 The

stopping criterion was Jou]| <20°

In this work, we used two codes of the codes are
programmer by visual Fortran. The first code was
developed by Andrie [10] and improved by Donal
and more. The second code developed by Andrei [11]
which uses CG algorithms, we improved this code
and adapted by using QN algorithms. We developed
the third code wing Matlab for results and graphic
comparisons.

Table (1.1) gives the total number of iterations (toit),
the total number of function evaluations (tfn) and
total time (totime) for solving 520 test problems.

Table (1-1)
n. | Name of Toit Tfn Totime
Algorithm
1 DFP 89665 | 860578 | 150730
2 PDFP 64629 | 209701 | 102052

In this Figures (1- 3) we adopt the performance
profiles by Donald and More [12] to compare the
performance based on the number of iterations and
CPU time. That is, for each method, we plot the
fraction # of problems for which the method is
within a factor tao of the best result. The left side of
the figure gives the percentage of the test problems
for whicg a method is the best result, the right side
gives the percentage of the test problems that are
successfully solved by each of the methods. The top
curve is the method that solved the most problems in
a result that is within a factor tao of the best results.
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Performance based on lteration
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Figure (1-1) Comparison between DFP and PDFP based on iteration

Performance based on function evalution
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Figure (1-2) Comparison between DFP and PDFP based on evaluation function
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Performance based on time

kS

Figure (1-3) Comparison between DFP and PDFP based on Time

7. Conclusion:

In this study a new algorithm presented a new form
DFP QN method developed for solving large-scale
unconstrained optimization problems, in which the
PDFP update based on the modified QN equation
have applied. An important feature of the proposed
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Bafa il LAY A (g Apd A8y hal Ayijal) (DFP) dima
34 48 danadly ¢ g pdad A ¢ U il dana pady

Gl ¢ dea sall ¢ i gall dnala ¢ 46 pal] o glall Lo yil] 2S¢ Coluialy ) anid !
Gl ¢ jéali ¢ yeli drals ¢ dusslanY) Ly il LS ¢ Coluialy pl) ansi
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toadlall
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DlaiVly sV duald ol Al jlaasy) dayd Wil S5V en gt b el (Vs ¢ Akl (PDFP) ik Wlieuls (DFP)
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