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Abstract

The aim of this paper is to calculate the Traveling waves solutions by using a new technique which is called
modified tanh-function method, which are successfully performed to get analytical solutions for Korteweg-
deVries (KdV)-Burgers’ equation and (2+1)-dimensional Calogero—Bogoyavlenskii—Schiff (CBS) equation. As
a result, when the equation parameters are taken as special values, some new solitary wave solution are obtained.
Moreover we find in this work that the modified tanh-function method give some new results which are easier
and faster to compute by the help of a symbolic computation system. The results obtained were compared with

standard tanh-function method.
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1-Introduction
For the time being, nonlinear partial differential
equations (PDEs) have been the subject of all-
embracing studies in various branches of nonlinear
sciences, because most of the phenomena that arise in
mathematical physics and engineering fields can be
described by nonlinear (PDEs). NLPDEs are
frequently used to describe many problems, such as,
solid state physics, fluid mechanics, plasma physics,
chemical kinematics, chemistry, nonlinear optics,
biology and many others. In particular, a traveling
wave solutions special case of analytical solutions for
nonlinear (PDEs), which can provide physical
information about the problem and help us to
understand the mechanism that governs these
physical problem. And thus lead to more applications.
Many powerful methods to construct exact solutions
of nonlinear partial differential equations have been
established and developed such as the tanh-coth
method [1-2], sine-cosine method [3], homogeneous
balance method [4-5], exp-function method [6], first-
integral method [7], Jacobi elliptic function method
[8], and (G'/G)-Expansion method [9-11].
In this work, we will employ the modified tanh-
function method to find the exact traveling
wave solutions for the Burgers—KdV equation [12]
U + EUUY — VUyy + AlUyy, =0, (1)

where €,v and A are arbitrary real constants with
evA # 0. This equation is the simplest form of the
wave equation in which the nonlinearity (uu,), the
dispersion (u,.,) and the dissipation (u,,) all occur.
It arise as a model for the propagation of waves on an
elastic tube [13], the flow of liquids containing gas
bubbles and weakly nonlinear plasma waves with
certain dissipative effects. Eq. (1) does not have the
Painleve property, which was first showed by
Gibbon et al. [14]. It can be collection between of the
Burger’s equation (¢ # 0,v # 0,4 = 0) and the KdV
equation (e # 0,v = 0,4 # 0).
We start with the (2 +1)-dimensional Calogero—
Bogoyavlenskii-Schiff (CBS) equation in the form
[15]

Uye + Unrz T AUyl + 2Uyut, = 0. (2)

187

The CBS equation was first investigated by
Bogoyavlenskii and Schiff by many different ways.
Bogoyavlenskii used the modified Lax formalism,
whereas Schiff derived the same equation by
reducing the self-dual Yang—Mills equation [16].

Our paper is organized as follows: in Section 2, we
present the description of modified tanh-function
method, and Section 3, we apply this method to the
nonlinear  Korteweg-de Vries (KdV)-Burgers’
equation and (2 +1)-dimensional Calogero—
Bogoyavlenskii—Schiff (CBS) equation pointed out
above, conclusions are given in Section 4.

2-The Modified Tanh-function Method

In this section, we describe the modified tanh-
function method for finding traveling wave solutions
of nonlinear partial differential equations (PDEsS).
Suppose that a nonlinear partial differential equations
in two independent variables, x and t are given by

P(u, Uy, Uy, Uyt Uyg, Uy, ) =0. (3
Where u = u(x,t) is an unknown function, Pis a
polynomial in u = u(x,t) and it’s various partial
derivatives, in which highest order derivatives and
nonlinear terms are involved. To determine the
modified tanh-function method, we take the
following seven steps.

Step 1. To find the traveling wave solutions of (3),
we introduce the wave variable.

u(x,t) =u(@), {=—ct) (4
where the constant ¢ is generally termed the wave
velocity. Substituting (4) into (3), we obtain the
following ordinary differential equations (ODE) in ¢
(which illustrates a principal advantage of a traveling
wave solution; i.e., a PDE is reduced to an ODE):

P(u,cu’,cu”,c®?u",u”,.)=0 ®)
Step 2. It is necessary to integrate (5) as many times
as possible and set the constants of integration to be
zero for simplicity.
Step 3. We suppose that Eq. (5) has the following
formal solution:

u(@) =S¥ = ag + X ay' + byt [o(1+2).  (6)

u
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Where m is a positive integer, and a,, a;, b; ,o and u
are constants, while Y is given by

Y =tanh({) (7)
Then, the independent variable ¢ in Eq. (7) leads to
the following derivatives:

d
(1- yz)@ , (8)

d¢
d? d? d
_ = — 2 — v — — —
a2 a y){(l y)dyz Zydy},
: 2y(32 d 22 &
d_{3=2(1_y )3y —1)5—6}’(1—3’) a2
ds
— y2)3
+(1-y% el

and so on.

Step 4. The positive integer m can be accomplished
by considering the homogeneous balance between the
highest order derivatives and nonlinear terms
appearing in (5) as follows:

Now, if we define the degree of u({) as D[u({)] =
m, then the degree of other expressions is defined by

dfuy
Dd—f‘l —rsn+q, )
D[ur(%) ] =mr + s(q + m).

therefore, we can get the value of m in (6)
Step 5. Substituting (6) along with (8) into (5) and we

obtain polynomials in y‘and y* /0(1 +y72), then

we collect each coefficient of the resulted
polynomials to zero, yields a set of algebraic
equations for ay, a; ,b;,c,o and u
_Step 6. Solving these algebraic equations by Maple
or Mathematica, we get the values of a,, a;, b;, ¢c,0
and .
Step 7. Substituting these values into (6) and (4), we
can obtain the exact traveling wave solutions of Eq.
A).
3-Applications of Modified Tanh-function
Method
3.1. Burgers—KdV equation
In order to solve (1) by the modified tanh-function
method, we use the wave transformation u(x,t) =
u(¢) , with wave variable = x + ct . We change the
Eg. (1) to the following NLODEs:

cu' + g @' —vu"+ 2" =0 (10)
Integrating (10) once with respect to ¢ and setting the
constant of integration to zero, we
obtain

cu+ guz —vu' + A" =0. (11)

Balancing the order of u? with the order of u” in
(11), we find M = 2. So the
solution takes the following form

_ 2 y2 y2
u=ag+ay+ay*+b; 0(1+7) + byy 0(1+7)

(12)
where ag,a,,a,,b,, by, o and u are unknown
constants to be determined later. Substituting (12)
into (11), with computerized symbolic computation,
equating to zero the coefficients of all power y!,
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yields a set of over-determined algebraic equations
for ay,a;,b;,c,0 and u. Solving the algebraic
equations by Maple or Mathematica, we can obtain
the following results:

Case 1:
Y =T 0 = 0b = by b, = b
ag = Etal— c ,a = U,01 = Dq,0, = Dy, C
=-21,0=0,A=0
Case 2:
—2v —2v
ao—T,al——,a2=0,b1=b1,b2=b2,c
=21,0=0,1=0
Case 3:
6v —12v 6v
Qo =< 1=T,a2=§,b1=b1,b2=b2,c
_—12v —0 v
75 0T T 0
Case 4.
—18v —12v 6v
Qo = 5e , 41 = Se 'az_g'b1=b1,b2
b 12v —OA—_U
“Ppc=7gm 0 =047,
Case 5:
—6v —12v —6v
G =5 0T T5g %2 T 5 +by = by, by
b 12v 01 = v
P =5m 0= 04T,
Case 6:
18v —12v —6v
2 ¥,G1 Se , Ay —Se;b1=b1,b2
b —12v _0/1_17
- ZJC_ 5 ,0 =0, 10
Case 7:
B =T e = 0b,=0,b, =0
aO_E'al_ 61a2_11_:2—;c
=2v,0=0,1=0
Case 8:
=T =" =0, = 0,b, = 0
ay, = E;al— E;az—,l—,2—,C
=2v,0=0,1=0
Case 9:
6v —12v 6v
a0=§,a1 =?,a2=§’b1=0’b2=0,c
_—1217 _ =V
75 T2 T 10
Case 10:
_—1817 _—1217 —6vb—0b—0
Go= g M T g BT T U=
_1217 /1_—
57T g
Case 11:

_—617 _—1217 _6vb—0b—0
aO_Se_lal_ 56 laZ 56:1_:2—;6
_1217 a

50727
Case 12:
18v —12v —6v
Ay ¥,a1 Se , Ay ?!bl O,bz—O,C
_—12v 1= v
75 YT 10
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In view of this, we obtain the following solitons and
kink solutions:

—-2v

u(x,t) = — [1 + tanh(x + 2vt)],
2v

uy(x,t) = - [1 + tanh(x + 2vt)],

6v 12 )
uz(x, t) = T [1 — 2tanh(x — ?vt) + tanh*(x

12
—?Ut)] ,
6v
uy(x,t) = T -3
12
— 2tanh(x + ?vt) + tanh?(x
+ 12 t
< Vol
—6v
us(x, t) = ? [1

12
+ 2 tanh(x + = vt) + tanh?(x
12
+ ? 1.71,')] ,
ug(x,t) = g [3 — 2tanh (x - 1—52vt) — tanh? (x -
12
Svt)],

If we set v=2 and e =5 in (ug), we obtain the
solitary wave solution

u= g[3 — 2 tanh(x — %t) —tanh?(x — ?t)]

(13)

This is exactly the same solution obtained by Soliman
as given in [12], when we assume v = 2,e = —5 and

u=-1/5.
2
u=

(x -

6 2

5Dl (19)
The solitary wave and behaviour of the solutions
u,(x, t) and uz(x,t) are shown in Figures 1 and 2

respectively for some fixed values of the v = 2 and
€ =5.
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Figure 1 The kink solution of u,(x, t) for v =2 and
€=>5.
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Figure 2 The kink solution of u3(x, t) forb =2and
€=75.

3.2. The (2+1) dimensional
Bogoyavlenskii — Schiff equation
Using the traveling wave variable u(x,z,t) = u({) ,
with wave variable { =x +z -Vt in Eq.(2) that
converts the given PDE into an ODE and on
integrating once, therefore integrating with respect
Jonce yields:

—-Vu' +3@W)?+u" =0. (15)
Balancing u'” with (u')? in (15), we obtain
m = 1. Therefore, the solution (6) can be written as

u=ay+ay+b ’0(1 + y?z). (16)

Where ay,a,,b;,0 and p constants to be determined
later. Substituting (16) into (15), collecting the
coefficients of Y* we obtain the following system of
algebraic equations for ay,a,,b,,0 and u .

y° =3b%, 0+ 3a%, u—oa;u =0,

y! = 6ub;, + 6ua,b, =0,

y? = 3ua?; + 6b%, op + 9a?; u* + vua, —

3b%, 0 — 18u%a; + 2a,u = 0,

y® = vub;, + 2ub, — 6ua,b; — 15b,u® +

12u?a;b; = 0,

y* = 3vu2a, + 3b?, ou? — 6b%, ou — 18ua, +
6ula; —9a?, u? +9a?, ud =

y5 = 4b,u? + 2vb,u? — 12u%a,b; — 12u3b, +
6u3b;a; =0,

y® = 3vuda, + 6uda; — 3b?%;, ou® + 3a?; u* —
9a?, u® — 6u*a; =0,

y? = vudb; — 6usb; a; + 8usb; + 3u?b; =0,

y® =3a?, u* + 2u*a, + vu*a, = 0.

On solving the above set of algebraic equations by
Maple, we have the following sets of solutions

Case 1:

Ay = Ay, a4y = 2,by =0, u =, v =4,

Case 2:

Go=0.a = Lby =+ [~1u=-1v=1,

Case 3:

Ay = Ay, a4y =a;,by =0, u=0,v=0,

In view of this, we obtain the following
solutions:

uy (x,t) = ag + 2tanh(x + z — 4t),

uy(x,t) = ag+tanh(x +z — t) + /_71 Jo(1—y?) ,
us(x,t) = ay +tanh(x +z — t) — _71 Jo(1 —y?)

Calogero—

kink
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This solution is the exact same solution obtained by
[15],when A = —1.
Some of our obtained traveling wave solutions are
represented in the Figures 3, for some fixed values of
theay =2,t =0.5
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X

Figure 3 The kink solution of wuz(x,t) foray =2,t =
0.5
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4. Conclusion
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