On Contra b-I- Continuous and Contra b-I- open Functions

Main Article Content

Payman M. Mahmood

Abstract

In this paper, we study the concepts of contra b-I-continuity and contra b-I-openness in ideal topological spaces, and obtain several characterizations and some properties of two functions. Also, we investigate its relationship with other types of functions.

Article Details

How to Cite
Payman M. Mahmood. (2023). On Contra b-I- Continuous and Contra b-I- open Functions. Tikrit Journal of Pure Science, 20(2), 177–186. https://doi.org/10.25130/tjps.v20i2.1178
Section
Articles

References

[1] A. Al-Omari and M. S. M. Noorani, Some

properties of contra- b -continuous and almost contrab

-continuous functions, European J. Pure Appl.

Math.,2 (2) (2009), 213-230.

[2] D. Andrijevic', On b -open sets, Matematichki.

Vesnik 48(1-2) (1996), 59-64.

[3] Metin Akdag, On b - I - open sets and b - I -

continuous functions, International. J. Math. Math.

Sci., (2007), Article ID 75721, 13 pages, doi:

10.1155/2007/75721.

[4] J. Bhuvaneswari, A. Keskin, N. Rajesh, Contracontinuity

via topological ideals, J. Adv. Res. Pure

Math., 3(1) (2011), 40-51.

[5] A. Caksu Guler and G. Aslim, b - I - open sets

and decomposition of continuity via idealization,

Proceedings of Institute of Mathematics and

Mechanics. National Academy of Sciences of

Azerbaijan, 22 (2005), 27–32.

[6] M. Caldas, S. Jafari, Some properties of contra-

  continuous functions, Mem. Fac. Sci. Kochi

Univ. (Math.), 22 (2001), 19-28.

[7] J. Dontchev, Contra-continuous functions and

strongly S-closed spaces, Internet. J. Math. Math.

Sci., 19 (1996), 303-310.

[8] J. Dontchev, On pre- I - open sets and a

decomposition of I - continuity, Banyan Math. J., 2

(1996).

[9] J. Dontchev, Idealization of Ganster-Reilly

decomposition theorems, Math. GN/9901017, 5 Jan.

1999 (Internet).

[10] J. Dontchev and T. Noiri, Contrasemicontinuous

functions, Math. Pannonica, 10(2)

(1999), 159-168.

[11] E. Hatir and T. Noiri, On decompositions of

continuity via idealization, Acta Math. Hungarica,

96(4) (2002), 341-349.

[12] E. Hatir, A. Keskin and T. Noiri, On a new

decomposition of continuity via idealization, JP Jour.

Geometry and Topology, 1 (2003), 53-64.

[13] S. Jafari and T. Noiri, Contra-super-continuous

functions, Ann. Univ. Sci. Budapest, 42(1999), 27-

34.

[14] S. Jafari and T. Noiri, Contra-α-continuous

functions between topological spaces, Iranian Int. J.

Sci. 2(2001), 153-167.

[15] S. Jafari and T. Noiri, Contra-precontinuous

functions, Bull. Malaysian Math. Sci. Soc., (Second

series) 25(2002), 115-128.

[16] D. Jankovi´c and T. R. Hamlett, New topologies

from old via ideals, The American Math. Monthly,

97(4) (1990), 295–310.

[17] D. Jankovi´c and T. R. Hamlett, Compatible

extensions of ideals, Unione Matematica Italiana.

Bollettino. B. Serie VII, 6(3) (1992), 453-465.

[18] N. Levine, Semi-open sets and semi-continuity

in topologicl spaces, The American Math. Monthly,

70(1963), 36-41.

[19] A. S. Mashhour, M. E. Abd El-Monsef and S. N.

El-Deep, On precontinuous and weak precontinuous

mappings, Proc. Math. Phys. Soc. Egypt, 53(1982),

47-53.

[20] A. S. Mashhour, I. A. Hasanein, and S. N. El-

Deeb, α-continuous and α-open mappings, Acta

Math. Hungarica, 41( 3-4) (1983), 213–218.

[21] M. Mrsevic, On pairwise R0 and R1

bitopological spaces, Bull. Math. Soc. Sci. Math. R.

S. Roumanie, 30:78(2) (1986), 141-148.

[22] Jamal M. Mustafa, Contra semi- I -continuous

functions, Hacettepe J. Math. Stat., 39(2)(2010), 191-

196.

[23] A. A. Nasef, Some properties of contra- -

continuous functions, Chaos Solitons Fractals

24(2005), 471-477.

[24] O. Njastad, On some classes of nearly open sets,

Pacific Journal of Mathematics, 15 (1965), 961-970.

[25] T. Noiri and S. Jafari, Contra pre- I -continuous

functions, Int. J. Math. Anal.,7(8) (2013), 349-359.

[26] R. Staum, The algebra of bounded continuous

functions into a nonarchimedean field, Pacific J.

Math., 50(1974), 169–185.

[27] A. Vadivel, V. Chandrasekar and M. Saraswathi,

On contra α- I -continuous functions, Int. J. Math.

Anal., 47(4)(2010), 2329-2338.