ON bi- INTUITIONSTIC TOPOLOGICAL SPACE

Taha H. Jassim¹, Zenah T. Abdulqader², Hiba O. Mousa²

¹Department of Mathematics, college of computer science and Mathematics, University of Tikrit, Tikrit, Iraq ²Department of Mathematics, College of Education for Women, Tikrit University, Tikrit, Iraq

Abstract:

In this paper we introduce a new definition is called bi- intuitionistic topological space and from this concept we present some kinds of closed set (semi –closed, pre-closed , β -closed , α -closed) setes in bi- intuitionistic topological space, define generalized closed set (sg-closed ,gs-closed ,gp-closed , α -closed , α -

1- Introduction and terminologies:

A triple (X ,T_i ,T_j) (i \neq j) where X \neq Ø and T_i ,T_j are topologies on X is called a bi – topological space in 1963 ,Kelly[3] , The concept of fuzzy set introduced for first time in1965 by Zadeh, 1996 Coker [4] introduced the concept of intuitionistic set and intuitionistic topology as a special case of intuitionistic fuzzy topological spaces. Now we define the bi- intuitionistic topological space if X \neq Ø , T_i , T_j are tow intuitionistic topological space(bi- ITS for short).

Now we recall the definition of an intuitionistic set and intuitionistic topology and some basic properties which are needed .

(1-1) definition:[5],[6]

Let X be a non-empty set. An intuitionistic set A (IS, for short) is an object having the form $A = \langle X, A_1, A_2 \rangle$ where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \emptyset$. The set A_1 is called set of members of A, while A_2 is called set of nonmember of A.

(1-2) definition:[6],[7]

Let A and B be two IS having the form $A = \langle x, A_1, A_2 \rangle$ and $B = \langle x, B_1, B_2 \rangle$ respectively, then,

- a) $A \subseteq B \iff A_1 \subseteq B_1 \& A_2 \supseteq B_2$
- b) $A = B \iff A \subseteq B \& B \subseteq A$
- c) $\overline{A} = \langle x, A_2, A_1 \rangle$
- d) $A \cap B = \langle x, A_1 \cap B_1, A_2 \cup B_2 \rangle$
- e) $A \cup B = \langle x, A_1 \cup B_1, A_2 \cap B_2 \rangle$
- f) $\widetilde{X} = \langle x, X, \emptyset \rangle$
- g) $\widetilde{\emptyset} = \langle x, \emptyset, X \rangle$.

(1-3) definition[4]:

Let X and Y be two non-empty sets and $f: X \to Y$ be a function.

- a) If $B = \langle y, B_1, B_2 \rangle$ is an IS in Y, then the preimage (inverse image) of B under f is denoted by $f^{-1}(B)$ is an IS in X and defined by $f^{-1}(B) = \langle x, f^{-1}(B_1), f^{-1}(B_2) \rangle$.
- b) If $A = \langle x, A_1, A_2 \rangle$ is an IS in X, then the image of A under f is denoted by f(A) is IS in Y defined by $f(A) = \langle y, f(A_1), \underline{f}(A_2) \rangle$ where $\underline{f}(A2) = (f(A^c2)^c)$, A any sub set of X.

(1-4) definition:[6]

An intuitionistic topology (IT for short) on a nonempty set X is a family T of IS's in X containing $\widetilde{\emptyset}$, \widetilde{X} , and closed under finite intersection and arbitrary union. In this case the pair (X, IT) is called an intuitionistic topological spaces, (ITS for short),

and any IS in T is known as an intuitionistic open set (IOS, for short) in X, the complement of IOS is called intuitionistic closed set (ICS, for short) in X.

(1-5) definition [2],[7]:

Let (X, IT) be ITS , and let $A=\langle x,A_1,A_2\rangle$ be IS in X. then the intuitionistic interior of ISA (int A ,for short) and intuitionistic closure of ISA (cl A , for short) are defined by

int $A=\cup \{G \in T : G \subseteq A \}$

 $cl A = \cap \{F : A \subseteq F, \overline{F} \in T\}$

(1-6) definition: [1]

- a) Let P_{\sim} be an IP in X and $A = \langle x, A_1, A_2 \rangle$ be an IS in X. P_{\sim} is said to be contained in A (for short $P_{\sim} \in A$, if $p \in A_1$).
- b) Let P_{\approx} be VIP in X and $A = \langle x, A_1, A_2 \rangle$ be an IS in X. P_{\approx} is said to be contained in A, $(P_{\approx} \in A, \text{ for short if, } p \notin A_2)$.

Now we introduce a new definitions which is needed in our work .

(2-1) definition:

We say that (X, IT_i, IT_j) bi- intuitionistic topological space if for each of (X, IT_i) and (X, IT_j) is intuitionistic topological space on X.

(2-2) definition:

Let (X, IT_i, IT_j) bi-ITS and G be a sub set of X then G is said to be (i, j)- intuitionistic open set((i, j)IOS) for short) if $G = A \cup B$ where $A \in IT_i$ and $B \in IT_j$ the complement of (i, j)-open set is (i, j)-intuitionistic closed set ((i, j)ICS) for short).

(2-3)Example:

Let $X = \{1,2,3\}$ and $IT_i = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C\}$ where

 $A = \langle X, \{3\}, \{1,2\} \rangle, B = \langle X, \{1\}, \{3\} \rangle, C =$

 $\langle X, \{1,3\}, \emptyset \rangle$.and

 $IT_j = \{\widetilde{\emptyset}, \widetilde{X}, D, E \}$ where $D = \langle X, \{1\}, \{2\} \rangle, E = \langle X, \{1\}, \{2,3\} \rangle$

(i, j)- open set = $\{\widetilde{\emptyset}, \widetilde{X}, A, B, C, D, E, F, G\}$ where $F=\langle X, \{1,3\}, \{2\} \rangle$, $G=\langle X, \{1\}, \emptyset \rangle$.

(i, j)- closed set= $\{\widetilde{\emptyset}, \widetilde{X}, \overline{A}, \overline{B}, \overline{C}, \overline{D}, \overline{E}, \overline{F}, \overline{G}\}$

(2-4) definition

Let (X, IT_i, IT_j) bi-ITS and $A = \langle x, A_1, A_2 \rangle$ is IS in X. then the intuitionistic interior and intuitionistic closure of A are denoted by (i,j)int(A) and(i,j) cl(A) respectively and defined as a union of all (i,j)- IOS of X that contained in A and the intersection of all (i,j)-ICS in X that contain A respectively .

(2-5)Remark

Let (X, IT_i, IT_j) bi-ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X. Then (i, j) cl $(\overline{A}) = (i, j)$ int(A) & (i, j) int $(\overline{A}) = (i, j)$ cl(A).

Now we give the definition of semi, pre ,semi pre (β) , pre semi (α) in bi ITS,s .

(2-6) definitions

Let be(X, IT_i , IT_j) bi- ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X. Then A is called:

1) (i,j) intuitionistic semi-open set ((i,j)ISOS, for short) if $A \subseteq IT_i cl(IT_iint(A))$

2(i, j)intuitionistic α -ope set ((i, j)(I α OS, for short)if $A \subseteq IT_i$ int $(IT_i$ cl $(IT_i$ int(A)).

3)(i,j) intuitionistic pre-open set ((i,j)(IPOS, for short)if $A \subseteq IT_i int (IT_i cl(A))$

4) (i, j) intuitionistic β -open set (i, j) (I β OS, for short) if $A \subseteq IT_i cl(IT_i cl(A))$.

The complement of (i,j)ISOS (resp. (i,j) I α OS, (i,j)IPOS, and(i,j) I β OS) is called(i,j) intuitionistic semi-closed set (resp. (i,j) intuitionistic α -closed, (i,j)intuitionistic pre-closed, , and (i,j) intuitionistic β -closed) set in X. ((i,j) ISCS, (i,j) I α CS, (i,j) IPCS, and (i,j) I β CS, for short).

(2-7)Theorem:

Let (X, IT_i , IT_j) bi-ITS, and $A = \langle x, A_1, A_2 \rangle$ IS in X. then

i.A is (i, j)ICS then A is(i, j) I α CS , (i, j)ISCS, (i, j) IPCS AND(i, j) I β CS .

ii.A is (i, j) I α OS then A is (i, j)ISOS,((i, j) IPOS,(i, j) I β OS.)

iii. A is (i, j) ISOS then A is(i, j) I β OS.

iv.A is (i, j) IPOS then A is (i, j)IβOS.

Proof: [clear from definition]

(2-8)Example:

Let $X = \{1,2,3\}$ and $IT_i = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C\}$ where $A = (X, \{3\}, \{1,2\}), B = (X, \{1\}, \{3\}), C =$

 $\langle X, \{1,3\}, \emptyset \rangle$.and

 $IT_j = \{\widetilde{\emptyset}, \widetilde{X}, D, E \}$ where $D = \langle X, \{1\}, \{2\} \rangle, E = \langle X, \{1\}, \{2,3\} \rangle$,

ISCX= $\{\widetilde{\emptyset}, \widetilde{X}, A, B, E, K_1, K_2, K_3, K_4, K_5\}$.

 $IPCX = \{\widetilde{\emptyset}, \widetilde{X}, A,$

 $\begin{array}{l} E, K_1, K_3, K_4, K_5, K_6, K_7, K_8, K_9, K_{10}, K_{11}, K_{12}, K_{13}, K_{14}, K_{15}, \\ K_{16}, K_{17} \end{array}$

 $I\alpha CX = \{\widetilde{\emptyset}, \widetilde{X}, A, E, K_1, K_3, K_4\}$

 $I\beta CX = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C, E, K_1, K_2\}$

 $,K_{3},K_{4},K_{5},K_{6},K_{7},K_{8},K_{9},K_{10},K_{11},K_{12},K_{13},K_{13},K_{14},K_{15},K_{16},K_{17}\}$

Where $K_1 = (X, \{3\}, \{1\}),$

 $K_{2=}\langle X, \{1,2\}, \{3\}\rangle$, $K_{3=}\langle X,\emptyset, \{1\}\rangle$, $K_{4}=\langle X,\emptyset, \{1,2\}\rangle$, $K_{5}=\langle X,\emptyset, \{1,3\}\rangle$, $K_{6}=\langle X,\{2\},\{1\}\rangle$, $K_{7}=\langle X,\{2\},\{3\}\rangle$, $K_{8}=\langle X,\{2\},\{1,3\}\rangle$,

 $K_9 = \langle X, \{2\}, \emptyset \rangle$, $_0 = \langle X, \{3\}, \{2\} \rangle$, $K_{11} =$

 $(X, \{3\}, \emptyset), K_{12} = (X, \{2,3\}, \{1\}) K_{13} = (X, \{2,3\}, \emptyset),$

 $K_{14}=\langle X,\emptyset,\{2\}\rangle$, $K_{15}=\langle X,\emptyset,\{2\}\rangle$, $K_{16}=\langle X,\emptyset,\{2,3\}\rangle$ $K_{17}=\langle X,\emptyset,\emptyset\rangle$

(2-9)Remark

Let (X, IT_i , IT_j) bi-ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X .then

(i, j)ISOS and (i, j)IPOS is indepented) from example (2-3) $K_{2=}(X, \{1,2\}, \{3\})$ is (i, j)ISOS but not (i, j)IPOS and $K_{15}=(X,\emptyset,\{2\})$ is (i, j)IPOS but not (i, j)ISOS.

(2-10) definition

Let (X, IT_i , IT_j) bi-ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X. Then the intersection of all (i,j) ISCS (resp (i,j)I α CS, (i,j)IPCS and(i,j) I β CS) in X that containing A is called the semi-closure (resp. (i,j) α -closure, (i,j) pre-closure, and (i,j) β -closure) of A and denoted by (i,j) scl(A) (resp. (i,j) α cl(A), (i,j) pcl(A), and(i,j) β cl(A)

Note It is well-known that:

$$\begin{split} (i,j)scl(A) &= A \cup IT_{j}int\big(IT_{i}cl(A)\big), (\text{ resp. } (i,j)\alpha cl(A) \\ &= A \cup IT_{i}cl \ IT_{j}int\big(IT_{i}cl(A)\big), \\ (i,j)pcl(A) &= A \cup IT_{i}cl \ IT_{j}int(A), (i,j)\beta cl(A) \\ &= A \cup IT_{i}int\left(IT_{i}cl \ IT_{j}int(A)\right) \end{split}$$

(2-11) definition

Let (X, IT_i, IT_j) be bi- ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X. Then the union of all(i,j) ISOS (resp. (i,j)I α OS, (i,j) IPOS and(i,j) I β OS) in X that contained A is called the(i,j) semi-interior (resp. (i,j) α -interior , (i,j)pre-interior and(i,j) β -interior) of A and denoted by (i,j)sint(A) (resp. (i,j) α -int(A), (i,j)pint(A) and(i,j) β -int(A))

Note It is well-known that

 $\begin{aligned} (i,j) sint(A) &= A \cap IT_j cl\ IT_i int(A), (\ resp.\ (i,j) \alpha cl(A) \\ &= A \cap IT_i int\ IT_j cl\ IT_i int(A), \\ (i,j) pint(A) &= A \cap IT_i int\ IT_j cl(A), (i,j) sint(A) \\ &= A \cap IT_i cl\ IT_i intIT_i cl(A). \end{aligned}$

(2-13)Proposition

Let (X, IT_i, IT_j) be bi- ITS, and $A = \langle x, A_1, A_2 \rangle$ be IS in X. Then A is(i, j) I α OS in X if and only if it is both (i, j)ISOS and (i, j) IPOS in X.

Proof: [clear from definition].

3-Generalized closed set in bi- intuitionistic topological spaces

(3-1) definitions

Let (X, IT_i, IT_i) be bi- ITS, an IS \tilde{A} in X is called:

1) (i, j) Generalized closed (briefly, (i, j) g-closed), if $IT_icl(A) \subseteq U$, whenever $A \subseteq U$ and U is IT_i-ISOS .

2) (i, j) Semi-generalized closed (briefly, (i, j) sg-closed), if IT_{j^-} scl(A) \subseteq U, whenever A \subseteq U and U is IT_{j^-} ISOS,

3) (i, j)Generalized semi-closed (briefly, (i, j) gs-closed), if $IT_{j^-}Scl(A) \subseteq U$, whenever $A \subseteq U$ and U is $IT_{j^-}IOS$,

4) (i, j)Generalized α -closed (briefly, (i, j) $g\alpha$ -closed), if $IT_j - \alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $IT_{i^-} I\alpha OS$,

5) (i,j) α -generalized closed (briefly, (i,j) α g-closed), if $IT_j - \alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is IT_i IOS,

6) (i, j)Generalized β -closed (briefly, (i, j) $g\beta$ -closed), if $IT_j - \beta cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $IT_{i^-}IOS$,

7) (i, j)Generalized pre-closed (briefly, (i, j) gp-closed), if $IT_{j^{-}}$ pcl(A) \subseteq U, whenever A \subseteq U and U is IT_{i} -IOS.

An IS A in X is(i,j) g-open (resp. (i,j) sg-open, (i,j) gs-open, (i,j) gg-open, (i,j) α g-open, (i,j) gg-open, and (i,j)gp-open), if the \overline{A} is(i,j) g-closed (resp. (i,j) sg-closed, (i,j) gs-closed, (i,j) α g-closed, (i,j) α g-closed, (i,j) α g-closed, (i,j) α g-closed.

(3-2)Theorem:

Let (X, IT_i, IT_j) bi- ITS. An intuitionistic subset A of X is (i, j)g-open if and only if, for each (i, j)ICS F in X such that $F \subseteq (i, j)int(A)$ whenever $F \subseteq A$

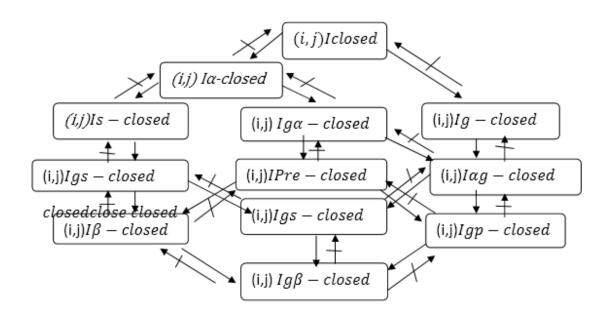
Proof

 \Rightarrow Suppose that A is(i, j) g-open set in X, and let F be any closed set such that $F \subseteq A$, so by definition $\overline{\tilde{A}}$ is

(i,j)g-closed set in X. Therefore, for each(i,j) IOS U say $U = \overline{F}$ in $X , \overline{A} \subseteq \overline{F}$, then(i,j) $cl(\overline{A}) \subseteq \overline{F}$, so $\overline{\overline{F}} = F \subseteq (i,j)cl(\overline{A}) = (i,j)int(A)$ by Remark (2-5). \Leftarrow suppose that for each(i,j) ICS $F \subseteq A$ then $F \subseteq (i,j)int(A)$, we have to prove that \overline{A} is (i,j)g-open, i.e. we have to prove that \overline{A} is (i,j) g-closed, let U be any IOS in X such that $\overline{A} \subseteq U$, we have to prove that (i,j) $cl(\overline{A}) \subseteq U$. For if, since U is (i,j) IOS, then \overline{U} is (i,j)ICS and \overline{U} A, so by hypothesis $\overline{U} \subseteq (i,j)int(\overline{A})$. Therefore(i,j), $\overline{Int(A)} = (i,j)cl(\overline{A}) \subseteq (i,j)int(\overline{A})$. By Remark (2-5) we get that \overline{A} is (i,j) g-closed.

(3-3)Theorem

Let(X,IT_i, IT_{ji})bi- ITS. Then the following implications in the diagram are true but not reversible.



Proof

The method of prove this theorem is to take one implication and prove truth one and give a counter example for the other at the end of the proof.

1) (i,j)Closed \Rightarrow)(i,j)g-closed, but the converse is not true.

We have to prove that, if A is(i,j)- closed set then A is(i,j) g-closed. For if, since A is(i,j)- closed, then(i,j) cl(A) = A. Now, for each (i,j)- IOS U , A \subseteq U. We have(i,j) cl(A) = A \subseteq U.

2) (i, j) IClosed \Rightarrow (i, j)I α -closed, but the converse is not true.

We have to prove that, if A is (i,j)- closed, then A is (i,j)I α -closed. For if, since A is (i,j)closed, then IT_icl(A) = A, so IT_j int IT_icl(A) \subseteq IT_icl (A), therefore IT_icl IT_jintIT_i cl(A) \subseteq IT_iclA = A. But α cl(A) = A \cup IT_i cl(IT_j int(IT_i cl(A)) \subseteq A \cup IT_icl(A) = IT_icl(A) = A, Therefore(i,j) α cl(A) \subseteq

A, and we have from definition of $A \subseteq (i,j)\alpha cl(A)$, so we get that(i,j) $\alpha cl(A) = A$. i.e. A is(i,j)I α -closed..

3) (i, j)Ig-closed \Rightarrow (i, j)I α g-closed and the converse is not true.

We have to prove that, if a is(i,j)Ig-closed, then A is (i,j) Iag-closed. For if, since A is Ig-closed, so for each $U \in IT_i$, $A \subseteq U$, then $IT_i cl(A) \subseteq U$. Since $IT_i cl(A) \subseteq U$, then $IT_j int IT_i cl(A) \subseteq A \subseteq U$, so $IT_j int IT_i cl(A) \subseteq IT_i cl(A) \subseteq IT_i cl(A) \subseteq U$. That is,(i,j) $acl(A) \subseteq IT_i closed$.

4) (i, j) I α g-closed \Rightarrow (i, j)Igp-closed and the converse is not true

We have to prove that, if A is $(i, j)\alpha g$ -closed, then A is (i, j) gp-closed. For if, since A is $I\alpha g$ -closed, so for each $U \in IT_i$, $A \subseteq U$, then $(i, j)\alpha cl(A) \subseteq U$.

 $(i,j)\alpha cl(A) = A \cup IT_i clIT_i intIT_i cl(A), (i,j)pcl(A) =$ $A \cup IT_i clIT_i int(A) \subseteq A \cup IT_i clIT_i intIT_i cl(A) =$

 $(i, j)\alpha cl(A)$ Since $IT_icl(A) \subseteq U$, then $IT_iintIT_icl(A) \subseteq$ $A \subseteq U$, $solT_i intlT_i cl(A) \subseteq lT_i cllT_i intlT_i cl(A) \subseteq$ $IT_i cl(A) \subseteq U$, so $(i,j)pcl(A) \subseteq (i,j)\alpha cl(A) \subseteq U$. That is, $(i, j)pcl(A) \subseteq U$. Therefore A (i, j)Igp-closed.

6) (i, j)Igs-closed \Rightarrow (i, j)Ig β -closed and the converse is not true.

We have to prove that, if A is (i, j)I gs-closed, then A is(i, j)Igβ-closed. For if, since A is(i, j)Igs-closed, so for each $U \in IT_i$, $A \subseteq U$, then $(i, j)scl(A) \subseteq U$.

Since (i, j)scl $(A) = A \cup IT_i$ int IT_i cl $(A) \subseteq U$

, and since $IT_i int IT_i cl(A) \subseteq IT_i int IT_i cl(A) \subseteq U$ $(i, i)\beta cl(A) \subseteq U$.

Therefore A is (i, j) Ig β -closed.

7)- (i, j) I β -closed \Rightarrow (i, j)Ig β -closed and the converse is not true.

We have to prove that, if A is(i,j)Iβ-closed, then A is(i, j) $Ig\beta$ -closed. For if,

since A is (i,j)I β -closed, IT_iintIT_iclIT_iint(A) \subseteq A. Let U be any IOS in IT_i such that $A \subseteq U$ Since $(i, j)\beta cl(A) = A \cup IT_iintIT_iclIT_iint(A) = A \subseteq$

Therefore A(i, j)Igβ-closed.

8) (i,j)Iag-closed \Rightarrow (i,j)Igs-closed and the converse is not true in general.

We have to prove that, if A is (i, j) Iag-closed, then A is(i, j)I gs-closed. For if,

since A is(i,j) Iag-closed, so for each $U \in IT_i$, $A \subseteq$ U, then(i,j) α cl(A) \subseteq U.

 $(i,j)scl(A) = A \cup IT_iintIT_icl(A) \subseteq A \cup$

 $IT_i clIT_i intIT_i cl(A) = (i, j)\alpha cl(A) \subseteq U$

Since (i,j) $scl(A) \subseteq (i,j)\alpha cl(A) \subseteq U$, That is, $(i,j)scl(A) \subseteq U.$

Therefore, A is (i,j) Igs-closed.

9) (i,j)Igp-closed \Rightarrow (i,j)Ig β -closed and the converse is not true in general.

We have to prove that, if A is (i, j)Igp-closed, then A is (i, j)Ig β -closed. For if,

since A is \Rightarrow (i, j)Igp-closed, so for each U \in IT_i $A \subseteq U$, then(i,j) pcl(A) $\subseteq U$

sine $U \in IT_i$, IT_i int $A \subseteq A$, then

 $\beta cl(A) = A \cup IT_i intIT_i clIT_i int(A) \subseteq A \cup$

 $IT_iclIT_iint(A) \subseteq A \cup IT_iclIT_iint(A) = A \subseteq$ U,so(i,i) $I\beta$ cl(A) $\subseteq U$.

That is, A is (i,j)Ig β -closed.

10)(i,j)I α -Closed⇒ (i,j)Is-closed, but the converse is

Since IT_i int IT_i cl(A) $\subseteq IT_i$ cl IT_i int IT_i cl(A) \subseteq A,so the result follows

11(i,j)I p-Closed⇒ (i, j)I β -closed, but the converse is not true

Since $IT_i cll T_i int(A) \subseteq IT_i int IT_i cll T_i int c(A) \subseteq A$, so the result follows.

12)(i,j)Iα-closed \Rightarrow (i, j)Igα-closed and the converse is not true in general.

We have to prove that, if A is (i,j)Iα-closed, then A is (i,j)Igα-closed. For if,

since A is $(i,j)I\alpha$ -closed, then IT_i $clIT_i$ int IT_i $clA \subseteq A$. Let $A \subseteq U$, where U is any IT_i α -open , Since $(i, j)\alpha cl(A) = A \cup IT_i clIT_i intIT_i cl(A) \subseteq A \subseteq U.$

Therefore A is (i,j) Ig α -closed.

13) (i,j)Is-closed \Rightarrow (i,j)Isg-closed and the converse is not true in general.

We have to prove that, if A is (i,j)Is-closed, then A is (i,j)Isg-closed. For if,

since A is (i,j)Is-closed, then IT_i int IT_i clA \subseteq A. Let $A \subseteq U$, where U is any IT_i s-open , Since $(i, j)scl(A) = A \cup IT_iintIT_icl(A) \subseteq A \subseteq U.$

Therefore A is (i,j)Isg-closed.

14) (i,j)Ig α -closed \Rightarrow (i,j)Ipre-closed and the converse is not true.

We have to prove that, if A is (i,j)Igα-closed, then A is(i,j)Ipre-closed. For if,

since A is (i,j)Igα-closed, then, each U is $IT_i\alpha OS$, $A \subseteq U$ then $(i, j)I\alpha clA \subseteq U$. $(i, j)\alpha cl(A) = A \cup IT_i clT_i lint IT_i cl(A) \subseteq U$ and since $IT_iclIT_iint(A) \subseteq IT_iclIT_iintIT_icl(A) \subseteq U$ $cllT_iint(A) \subseteq A$.

Therefore A is (i,j)Ipre-closed

15) (i,j)Isg-closed⇒(i,j)I β -closed, and the converse is not true in general

We have to prove that, if A is(i,j)Isg-closed, then A is (i,j)Iβ-closed. For if, since A is (i,j)Isg-closed then, if for each $U \in IT_iSOS$, $A \subseteq U$ then $(i, j)sclA \subseteq U$. (i,j)scl $(A) = A \cup IT_i$ int IT_i cl $(A) \subseteq U$ and since

 $IT_iintIT_icIIT_iint(A) \subseteq IT_iintIT_icI(A) \subseteq U$ ($IT_iintA \subseteq$ $IT_iintIT_icIIT_iint(A) \subseteq A$. Therefore A A) then (i,j)Iβ-closed.

16) (i,j)Ig α -closed \Rightarrow (i,j)I α g-closed, and the converse is not true in general.

We have to prove that, if A is(i,j)I gα-closed, then A is(i,j)I αg-closed. For if,

since A is (i,j)Ig α -closed, then, if for each $U \in$ $IT_i\alpha OS$, $A \subseteq U$ then $(i, j)\alpha clA \subseteq U$. $(i,j)\alpha cl(A) \subseteq IT_i clA \subseteq U$ for each IOS G, $A \subseteq G(G)$ is(i,j)IαOS)

Therefore, $(i,j)\alpha cl(A) \subseteq IT_i clA \subseteq G$, A(i,j)I αg-

17) (i,j)I sg-closed \Rightarrow (i,j)Igs-closed, an the converse is not true in general.

We have to prove that, if A is (i,j)Isg-closed, then A is (i,j)Igs-closed. For if,

since A is (i,j)Isg-closed, then, if for each $U \in ISOS$ $A \subseteq U$ then(i,j)scl $A \subseteq U$. Since (i,j)scl $A \subseteq U$. $IT_i clA \subseteq U$ for each(i,j)IOS G, $A \subseteq G(G \text{ is } (i,j)ISOS)$ Therefore, (i, j)scl $(A) \subseteq IT_i$ cl $A \subseteq G$, A is (i, j)Isg-

The following example shows that;

1) (i, j) I αg-closed (i, j) I gα-closed

2) (i, j) Igp-closed ,(i,j)Ip-closed , (i,j)Igs-closed (i,j)Igβ-closed and (i,j)I β-closed (i,j) gαclosed

3) (i, j) I gs-closed, (i, j) I β-closed and (i, j) Igβclosed \longrightarrow , (i, j) Isg-closed.

4) ,(i, j) Ig-closed \rightarrow (i, j)I closed

(3-4)Example:

Let $X = \{a, b, c\}$ and $IT_i = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C\}$ where $A = \langle X, \{a\}, \{b, c\}\rangle, B = \langle X, \{c\}, \{a, b\}\rangle, C = \langle X, \{a, c\}, \{b\}\rangle$ and

 $IT_j = \!\! \left\{ \!\! \left\{ \!\! \widetilde{\emptyset}, \widetilde{X}, D, E \right. \right\} \quad \text{where} \quad D = \langle X, \{a\}, \{\, b\} \rangle \,\,, \,\, E = \langle X, \{\, a, c\}, \emptyset \rangle$

 $I\alpha O(X) = \{$

 $\begin{array}{lll} \widetilde{\varnothing}, \widetilde{X}, A, B, C, D, E, G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_8, G_9, G_{10}, G_{11}, \\ G_{12}, G_{13} &\} &= ISO(X). \quad \text{where} \quad G_1 = \langle X, \{a \}, \{c \} \rangle, \\ G_2 = \langle X, \{a \}, \emptyset \rangle, \quad G_3 = \langle X, \{b \}, \{a\} \rangle, \quad G_4 = \langle X, \{b \}, \{c \} \rangle, \\ G_5 = \langle X, \{b \}, \{a, c \} \rangle, \quad G_6 = \langle X, \{b \}, \emptyset \rangle, \quad G_7 = \langle X, \{c \}, \{a \} \rangle, \\ G_8 = \langle X, \{c \}, \{b \} \rangle, \quad G_9 = \langle X, \{c \}, \emptyset \rangle, \quad G_{10} = \langle X, \{a, b \}, \{c \} \rangle, \\ G_{11} = \langle X, \{a, b \}, \emptyset \rangle, \quad G_{12} = \langle X, \{b, c \}, \{a \} \rangle, \\ G_{13} = \langle X, \{b, c \}, \emptyset \rangle. \end{array}$

1) Let $L=\langle X,\{b\},\emptyset\rangle\subseteq U=X$. then L is $(i,j)I\alpha g$ -closed set because

(i, j) $\alpha cl(L) = A \cup ITi - cl(ITj - int(ITi - cl(L))$ =(i, j) $\alpha cl(L) = A \cup ITi - cl(ITj - int(X))$ = $L \cup X = X \subseteq U$.

But is not (i, j)Ig α -closed set because the only(i, j) I α OX in X containing L is G_{11} , G_{13} But (i, j)Ig α -cl = X $\nsubseteq G_{11}$, G_{13} .

2) L is (i, j)Igp-closed ((i, j)Ip-closed , (i, j)Igs-closed , (i, j)Ig β -closed and (i, j)I β -closed) because :

$$\label{eq:continuity} \begin{split} &(i,j)pcl(L){=}L \subseteq U \text{ , } (i,j)Ip\text{-closed } = IT_i \text{ c } l(IT_j\text{-}int(L)){\subseteq} L = IT_i\text{-}cl(\emptyset) = \emptyset \subseteq L. \end{split}$$

, (i, j) $gscl(L) = X \subseteq U$ and ,(i, j) $g\beta cl(L) = L \subseteq U$. but are not (i, j) $g\alpha$ -closed set because by (1).

3)L is (i, j) gs-closed set since (i, j) $gscl(L)=L \cup ITj int(ITi cl(L))$

(i, j) $gscl(L)=L \cup X = X \subseteq U$ and L is (i, j)I β -closed, , (i, j)Ig β -closed

Because (i, j)I β -closed : ITj int(ITi clITj int(L)) \subseteq L so : ITj int(ITi cl \emptyset) = $\emptyset \subseteq L$, (i, j)Ig β cl(L) = L \subseteq U. But not (i, j) Isg -closed because the only ISOX in X containing L is G_{11} , G_{13} But (i, j) gscl(L) = X \nsubseteq G_{11} , G_{13}

4) since $L = \langle X, \{b\}, \emptyset \rangle \subseteq U = X$ then $cl(L) = X \subseteq U$ therefore L is (i, j)Ig-closed set but not closed set $L \notin IT_i$ -closed set.

The following examples show that;

1) (i,j) Ig β -closed (i,j) Isg -closed, (i,j) I gs -closed, and (i,j) Ig α -closed.

2) (i,j) Iß-closed (i,j) Isg-closed

3) (i, j) Ip -closed \rightarrow (i, j) Ig α -closed

4) (i, j) Igp -closed \longrightarrow (i, j) Ig α -closed

(3-5) Example:

Let $X = \{a, b, c\}$ and $IT_i = \{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where $A = \langle X, \{a, b\}, \emptyset \rangle$, $B\langle X, \{a\}, \{c\} \rangle$ and $IT_j = \{\widetilde{\emptyset}, \widetilde{X}, C, D\}$ where $C = \langle X, \emptyset, \{b\} \rangle$, $D = \langle X, \{a\}, \{b\} \rangle$.

Let $H = \langle X, \emptyset, \{c\} \rangle \subseteq U = \langle X, \{a\}, \{c\} \rangle$

1) H is $(i,j)Ig\beta$ -closed set because $(i,j)Ig\beta$ -cl(H)=H \subseteq U.But H is not (i,j)Isg -closed, (i,j) I gs -closed

because (i, j) I gscl(H)= $X \nsubseteq U$, and not (i, j)Ig α – closed because (i, j) I g α cl(H)= $X \nsubseteq U$

2) H is $(i,j)I\beta$ -closed : $IT_jint(IT_icl\ IT_jint(H)) \subseteq H$ then

 IT_j int $(IT_i cl(\emptyset)) = \emptyset \subseteq H$ since $(i,j) I gacl(H) = X \nsubseteq U$ then H is not (i,j) I gg - closed.

3) since (i,j) Ip -closed set $\left(IT_i \text{ cl } IT_j \text{int}(H)\right) \subseteq H$ then $IT_i \text{ cl} \emptyset = \emptyset \subseteq H$ so H is (i,j) Ip -closed set but H is not (i,j) $Ig\alpha$ -closed because (i,j) $Ig\alpha \text{ cl}(H) = X \nsubseteq U$

4) H is (i, j) Igp –closed because (i, j) Ipcl(H)=H \cup IT_icl (IT_i int (H))

= $H \cup IT_i cl\emptyset = H \subseteq U$ but is not (i,j) $Ig\alpha$ -closed because (i,j) $I \alpha cl(H) = X \nsubseteq U$

(3-6) **Example:**

From example (2-3) let $M = \langle X, \{1\}, \{2\} \rangle \subseteq U = X$ then

1) M is (i,j) Igp –closed set because (i,j) I $pcl(M) = M \cup IT_icl(IT_jint(M))$

 $=M \cup IT_i \stackrel{\frown}{cl}(D) = M \stackrel{\frown}{\cup} X = X \subseteq U$, But $M \notin IPCX$.

And (i,j) I β cl(M)= M \cup IT_jint (IT_icl (IT_jint (M)) = M \cup X = X \subseteq U so M is (i,j) Ig β –closed set but M \notin I β CX..

2) Let $F = \langle X, \{1\}, \emptyset \rangle \subseteq U = X$ then (i, j) I $Scl(F) = F \cup IT_j int(IT_i cl(F)) = F \cup X = X \subseteq U$ so F is (i, j) Igs -closed set but $F \notin ISCX$ $IT_i cl(IT_j And (i, j) I <math>acl(F) = F \cup IT_j int(IT_i cl(F)) = F \cup X = X$ so F is (i, j) Iga -closed But $F \notin IaCX$..

Now we introduce the definition of T_{gs} -space in bi-ITS.

(3-7)definition:

 (X , IT_i , IT_j) bi-ITS is said to be Tgs-space, if every (i,j)Igs-closed set in X is (i,j)Isg-closed set in X.

(3-8)proposition:

A subset A of (X, IT_i, IT_j) bi-ITS is $(i,j)Ig\alpha$ - closed if and only if $X_1 \cap (i,j)\alpha cl(A) \subseteq A$, where

 $\lambda_1 =$

 $\{P_{\sim} = \langle x, \{p\}, \{p\}^c \rangle \in X: P_{\sim} \text{is no where dense in } \widetilde{X} \}$

Proof: The same method of proof in ITS see [1] (3-9)theorem:

For (X , IT_i , IT_j) bi-ITS $\,$, the following statements are equivalent.

1. (X, IT_i, IT_i) is Tgs-space,

2. P_{*} is either (i,j)Ipre-open or (i,j)I closed for each $P \in \widetilde{X}$

3. Every(i,j)I αg-closed in X is (i,j)Igα-closed.

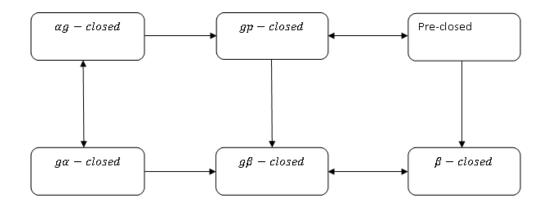
4. Every gp-closed set in X is pre-closed.

5. Every $g\beta$ -closed set in X is β -closed in X.

6. Every gp-closed in X is β -closed.

Proof: by similar way on the Tgs space in ITS see [1].

Now we get tow equavilant relation and one new implication in theorem (3-9).



References

[1].Al-hawez, Z. T. (2008), generalized slightly continuous function between ITS, M.Sc. thesis college of Education Tikrit university.

[2].Andrijeric, D. (1996) "On b-open sets" M. Bechnk. 48 pp. 59-64.

[3].J. C. Kelly, Bitopological spaces, Proc, London Math. Soc., 13 (1963), 71–89.

[4]. Coker, D. (1996) "a note on intuitionistic set and intuitionistic points" Turkish J. of Math. Vol.20, pp. 343-351.

[5].Ozcelik, A. Z. and Narli, S. (2007) "On submaximality in intuitionistic topological space" International J. of Math. And Math. Sci. Vol. 1. No.1. pp. 139-141

[6].Özcač, S. and Coker, D. (2000) "A note on connectedness in intuitionistic fuzzy special topological spaces" International J. of Math. and Math. Sci. Vol. 23. No.1. pp. 45-54.

[7].Jeon, J. K., Baejun Y. and Park, J. H. (2005) "Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy precontinuity" Inter. J. of Math. Sci. 3041-3101.

[8]..Noiri, T. and Popa, V. (2006) "Slightly m-continuous multifunction" Bull. Of the institute of mathematic Academia Sinica Vol. 1, No. 4, pp. 484-505.

حول الفضاء ثنائى التبولوجي الحدسي

 2 طه حمید جاسم 1 ، زینه طه عبد القادر 2 ، هبه عمر موسی

القسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق أقسم الرياضيات ، كلية التربية للبنات ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث نقدم تعريفا جديدا يسمى الفضاء ثنائي التبولوجي الحدسي وعن هذا المفهوم نقدم بعض أنواع المجموعات المغلقة (المجموعة شبه مغلقة، المجموعة قبل المغلقة، المجموعة مغلقة $^{\alpha}$ المغلقة، المجموعة مغلقة، المجموعة مغلقة، $^{\alpha}$ المغلقة، $^{\alpha}$ المغلقة،