Zagreb Polynomials of Certain Families of Dendrimer Nanostars

Main Article Content

Nabeel E. Arif

Abstract

Let G be a simple connected graph with vertex set V(G) and edge set E(G). The first, second and third Zagreb polynomials of G are defined as  ,   and  A dendrimer is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, the first, second and third Zagreb polynomials of three types of dendrimers are computed.

Article Details

How to Cite
Nabeel E. Arif. (2023). Zagreb Polynomials of Certain Families of Dendrimer Nanostars. Tikrit Journal of Pure Science, 20(4), 148–151. https://doi.org/10.25130/tjps.v20i4.1228
Section
Articles

References

1. M.B. Ahmadi, M. Sadeghimehr, Second order

connectivity index of an infinite class of dendrimer

nanostars, Dig. J. Nanomater. Bios. 4 (2009), 639-

643.

2. S. Alikhani, M.A. Iranmanesh, Chromatic

polynomials of some dendrimers, J. Comput. Theor.

Nanosci. 7 (2010), 2314-2316.

3. A. Astaneh-Asl, G. Fath-Tabar, Computing the

first and third Zagreb polynomials of Cartesian

product of graphs, Iranian J. Math. Chem 2(2) (2011),

73-78.

4. N.E. Arif, R. Hasni, S. Alikhani, Chromatic

polynomials of certain families of dendrimer

nanostars, Dig. J. Nano. Biostr. 6 (2011), 1551-1556.

5. A.R. Ashrafi, M. Mirzargar, PI Szeged and edge

Szeged indices of an infinite family of nanostar

dendrimers, Indian J. Chem. 47A (2008), 538-541.

6. N. Dorosti, A. Iranmanesh. M.V. Diudea,

Computing the Cluj index of dendrimer nanostars,

MATCH Commun. Math. Comput. Chem. 62 (2009),

389-395.

7. J. Braun, A. Kerber, M. Meringer, C. Rucker,

Similarity of molecular descriptors: the equivalence

of Zagreb indices and walk counts, MATCH

Commun. Math. Comput. Chem. 54 (2005), 163-176.

8. K.C. Das, I. Gutman, Some properties of the

second Zagreb index, MATCH Commun. Math.

Comput. Chem. 52 (2004), 103-112.

9. A.A. Dobrynin, R. Entringer, I. Gutman, Wiener

index of trees: Theory and applications, Acta Appl.

Math. 66 (2001), 211-249.

10. A.A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert,

Wiener index of hexagonal systems, Acta Appl.

Math. 72 (2002), 247-294

11. M.R. Farahani, First and second Zagreb

polynomials of VC5C7[p,q] and HC5C7[p,q]

nanotubes, Int. Lett. Chem. Phsy. Astr. 12 (2014), 56-

62.

12. M.R. Farahani, Zagreb indices and Zagreb

polynomials of Polycyclic Aromatic Hydrocarbons

PAHs, J. Chem. Acta 2 (2013), 70-72.

13. G.H. Fath-Tabar, Old and new Zagreb indices of

graphs, MATCH Commun. Math. Comput. Chem. 65

(2011), 79-84.

14. G.H. Fath-Tabar, Zagreb polynomials and PI

indices of some nano-structures, Dig. J. Nanomater.

Bios. 4 (2009), 189-191.

15. I. Gutman, N. Trinajstic, Graph theory and

molecular orbitals, Total  electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.

16. I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.

17. A. Iranmanesh, N.A. Gholami, Computing the Szeged index of styrylbenzene dendrimer and triarylamine dendrimer of generation 1-3, MATCH Commun. Math. Comput. Chem. 62 (2009), 371-379.

18. B. Klajnert, M. Bryszewska, Dendrimers: properties and applications, Acta Biochim. Polonica 48 (2001), 199-208.

19. S. Li, Zagreb polynomials of thorn graphs, Kragujevac J. Sci. 33 (2011), 33-38.

20. M. Mirzagar, PI, Szeged and edge Szeged polynomials of a dendrimer nanostar, MATCH Commun. Math. Comput. Chem. 62 (2009), 363-370.

21. S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.

22. H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17-20.

23. H. Yousefi-Azari, A.R. Ashrafi, A. Bahrami, Y. Yazdani, Computing topological indices of some types of benzenoid systems and nanostars, Asian J. Chem. 20 (2008), 15-20.

24. B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004), 93-95.

25. B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113-118.

26. B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 233-239.