Anew Types of Contra Continuity in Bi-Supra Topological Space

Main Article Content

Taha H. Jasim
Ali A. Shihab
Shaymaa A. Hameed

Abstract

In this paper we introduce a new class of functions in bi-supra topological space called (contra-i[contra-ii]-continuous, contra-g-i[contra-g-ii]-continuous,contra--i[contra--ii]-continuous, contra-gr-i[contra-gr-ii]-continuous, contra-gb-i[contra-gb-ii]-continuous,  contra-πg-i[contra-πg-ii]-continuous, contra-πgα-i[contra-πgα-ii]-continuous, contra-πgr-i[contra-πgr-ii]-continuouos, contra-πgb-i[contra-πgb-ii]-continuous) and we study the relation among these functions and the composition of these functions. At   last many important theorems are proved.

Article Details

How to Cite
Taha H. Jasim, Ali A. Shihab, & Shaymaa A. Hameed. (2023). Anew Types of Contra Continuity in Bi-Supra Topological Space. Tikrit Journal of Pure Science, 20(4), 170–176. https://doi.org/10.25130/tjps.v20i4.1232
Section
Articles

References

[1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2),19-30, 32(1) (2009).

[2] A.S. Mashour, M.E. Abd El- Monsef and S.N. El-Deep. On Precontinuous and weak pre continuous mappings, Proc, Math, Phys. Soc. Egypt., 53, 47-53. 1982.

[3] C.Janaki, Studies on πgα-closed sets in Topology, Ph. D Thesis, Bharathiar University, Coimbatore (2009).

[4] C.Janaki and V.Jeyanthi-A New Class of Contra Continuous Functions in Topological Spaces-International Refereed Journal of Engineering and Science (IRJES),44-51, 2(2013).

[5] D. Andrijevic, On b-open sets, Mat. Vesnik 48, 59-64,(1996).

[6] D.Andrijevic. Semi- preopen sets, Mat. Vesnik, 38 (1), 24-32. (1986).

[7] E.Ekici, On Contra πg-continuous functions, Chaos, Solitons and Fractals, 71-81,35 (2008).

[8] H. Maki, P.Sundaram and K. Balachandran: On Generalized homeomorphisms in topological spaces. Bulletin of Fukuoka Uni. Of Edn. Vol.40, Part III,13-21,(1991).

[9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α –closed sets and-generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math.51–63,15(1994).

[10] I.Arokiarani, K. Balachandran and C.Janaki, On contra-πgα-continuous functions, Kochi. J. Math., (3),201-209, (2008).

[11] J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar. 89, 211–219, (3) (2000).

[12] J. Dontchev, Contra – continuous function and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19,303-310, (1996).

[13] Jeyanthi.V, 2Janaki.C, πgr-Closed Sets In Topological Spaces, Asian Journal of Current Engineering and Maths,241 – 246. 1: 5 Sep –Oct (2012).

[14] Kelley, J.C. “Bi-topological space ”,proc London , math Soc., 71-89 (1963).

[15] Mashhour, S., M.E. Abd El-Monsef and S.N. El-Deep, onphys. Soc. Egypt, 53: 47-53, (1983).

[16] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra-continuity via Levineʼs g-closed sets, Chaos, Solitons and Fractals 32, 1597-1603, (2007).

[17] Metin Akdag and Alkan Ozkan- Some Properties of Contra gb-continuous Functions-Journal of New Results in Science ,40-49,1 (2012).

[18] M.H. Stone. Application of the Theory Boolean rings to general topology, Trans.Amer.Math.Soc.,41, 375-381. (1937).

[19] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19, 89– 96, (1970).

[20] N. Levine. Semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly, 70, 36-41. (1963).

[21] O. Njastad. On some classes of nearly open sets, Pacific J. Math. 15, 961-970. (1965).

[22] S. Bhattacharya, On generalized regular closed sets, Int. J. Contemp. Math. Sciences, Vol. 6, no. 145-152, (201).

[23] S.I. Mahmood, On Generalized Regular Continuous Functions in Topological spaces, Ibn Al- Haitham Journal for pure and applied sience, No.3, Vol .25,377-385 ,(2012).

[24] Sreeja .D and Janaki. C, On Contra πgb-continuous functions in topological spaces, International Journal of Statistika and Mathematika, E-ISSN-2239-8605, Vol 1 , issue 2,pp 46-51, (2011).

[25] V. Zaitov. On certain classes of topological spaces and their bicompactification, Dokl Akad Nauk SSSR. 178: 778-9. (1968).