The Role of IL-6 and IL-17 in SARS CoV-2 Patients with Secondary Bacterial Pneumonia
Main Article Content
Abstract
The current study was conducted in Kirkuk city at Al-Shifaa 14 hospital from November 2021 to March 2022, indicated the bacteria causing secondary pneumonia isolated from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients and the role of IL-6 and IL-17 in these infection.
Sputum samples were used to obtain the bacterial isolates, and API testing was used to confirm the species level identification. Using an enzyme-linked immunosorbent assay (sandwich ELISA), the levels of IL-6 and IL-17 in the blood were evaluated. The study documented several bacterial species in a single infection (56/87.5%) or mixed bacterial infection (8/12.5%). The most common isolated bacteria species was Klebsiella pneumoniae (35.95%) followed by Staphylococcus aureus (31.25%), E. coli (17.19%), Pseudomonas aeruginosa (10.94%), and (1.56%) for each of Klebsiella oxytoca, Acinetobacter baumannii and Cronobacter sakazakii. The study recorded a high significant difference (P <0.01) between the patients (22.2±6.82) pg/mL and the control group (58.39±11.15) pg/ mL concerning IL-6 also a high significant difference (P <0.01) between the patients (101.79±27.13) pg/mL and the control group (58.39±11.15) pg/mL concerning IL-17.
In conclusion, K. pneumoniae and S. aureus were the predominant isolated bacteria from COVID-19 patient's lung and there was a highly significant increase in IL-6 and IL-17 levels in secondary bacterial pneumonia in COVID-19 patients.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Wang, C., Horby, P. W., Hayden, F. G., and Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The lancet, 395(10223), 470-473.
[2] Morens, D. M., Taubenberger, J. K., & Fauci, A. S. (2008). Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases, 198(7), 962-970.
[3] Morris, D. E., Cleary, D. W., & Clarke, S. C. (2017). Secondary bacterial infections associated with influenza pandemics. Frontiers in microbiology, 8, 1041.
[4] Feng, Y., Ling, Y., Bai, T., Xie, Y., Huang, J., Li, J., ... & Qu, J. (2020). COVID-19 with different severities: a multicenter study of clinical features. American journal of respiratory and critical care medicine, 201(11), 1380-1388.
[5] Bengoechea, J. A., & Bamford, C. G. (2020). SARS‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID‐19?. EMBO molecular medicine, 12(7), e12560.
[6] Rawson, T. M., Moore, L. S., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., ... & Holmes, A. (2020). Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clinical infectious diseases, 71(9), 2459-2468.
[7] Du, R. H., Liang, L. R., Yang, C. Q., Wang, W., Cao, T. Z., Li, M., … & Shi, H. Z. (2020). Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal, 55(5).
[8] Rouzé, A., Martin-Loeches, I., Povoa, P., Makris, D., Artigas, A., Bouchereau, M., … & Nseir, S. (2021). Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive care medicine, 47(2), 188-198.
[9] De Bruyn, A., Verellen, S., Bruckers, L., Geebelen, L., Callebaut, I., De Pauw, I., Stessel, B., & Dubois, J. (2022). Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation. BioMed Central infectious diseases, 22(1), 1-7.
[10] Teijaro, J. R., Walsh, K. B., Rice, S., Rosen, H., & Oldstone, M. B. (2014). Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proceedings of the National Academy of Sciences, 111(10), 3799-3804.
[11] Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 20(6), 355–362.
[12] Conti, P., D’Ovidio, C., Conti, C., Gallenga, C. E., Lauritano, D., Caraffa, A., Kritas, S. K., & Ronconi, G. (2019). Progression in migraine: role of mast cells and pro-inflammatory and anti-inflammatory cytokines. European journal of pharmacology, 844, 87-94.
[13] Al-Rawi Kh. M., Entrance to Statistics, 2ed ed., 2000, Babylon, Iraq.
[14] d'Humières, C., Patrier, J., Lortat-Jacob, B., Tran-Dinh, A., Chemali, L., Maataoui, N., Rondinaud, E., Ruppé, E., Burdet, C., Ruckly, S., Montravers, P., Timsit, J. F., & Armand-Lefevre, L. (2021). Two original observations concerning bacterial infections in COVID-19 patients hospitalized in intensive care units during the first wave of the epidemic in France. Public library of sience one, 16(4), e0250728.
[15] Pourajam, S., Kalantari, E., Talebzadeh, H., Mellali, H., Sami, R., Soltaninejad, F., ... & Solgi, H. (2022). Secondary Bacterial Infection and Clinical Characteristics in Patients With COVID-19 Admitted
to Two Intensive Care Units of an Academic Hospital in Iran during the First Wave of the Pandemic. Frontiers in cellular and infection microbiology, 141.
[16] Ameen, H. M., Mahdi, N. B., & Eldin, A. M. K. (2021). Investigation of secondary Bacterial Lung Infections associated with Corona virus Covid19, and the extent of their Resistance to some types of Antibiotics in the city of Kirkuk. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 9153-9161.
[17] Cillóniz, C., Ewig, S., Ferrer, M., Polverino, E., Gabarrús, A., Puig de la Bellacasa, J., ... & Torres, A. (2011). Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis. Critical care, 15(5), 1-10.
[18] Qu, J., Cai, Z., Liu, Y., Duan, X., Han, S., Liu, J., ... & Yang, L. (2021). Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Frontiers in cellular and infection microbiology, 129.
[19] Gayam, V., Konala, V. M., Naramala, S., Garlapati, P. R., Merghani, M. A., Regmi, N., ... & Adapa, S. (2020). Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID‐19 and Mycoplasma pneumoniae in the USA. Journal of medical virology, 92(10), 2181-2187.
[20] Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Møller, R., … & Albrecht, R. A. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 181(5), 1036-1045
[21] Santa Cruz, A., Mendes-Frias, A., Oliveira, A. I., Dias, L., Matos, A. R., & Carvalho, A. (2021). Interleukin-6 is a biomarker for the development of fatal severe acute respiratory syndrome coronavirus 2 pneumonia. Frontiers in Immunology. 2021; 12: 613422.
[22] Herold, T., Jurinovic, V., Arnreich, C., Hellmuth, J. C., von Bergwelt-Baildon, M., Klein, M., & Weinberger, T. (2020). Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. MedRxiv.
[23] Holub, M., Lawrence, D. A., Andersen, N., Davidová, A., Beran, O., Marešová, V., & Chalupa, P. (2013). Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of inflammation, 2013.
[24] Abed, S. M., Al Boraqy, M. M., & Fatlawi, S. N. A. (2018). Role of Procalcitonin in Detection of Bacterial Pneumonia. EXECUTIVE EDITOR, 9(12), 12638.
[25] Recovery Collaborative Group. (2021). Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet, 397(10285): 1637-1645.
[26] Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., & Zhang, Y. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal transduction and targeted therapy, 5(1), 1-8.
[27] Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in immunology, 1446.
[28] Shin, Y. H., Shin, J. I., Moon, S. Y., Jin, H. Y., Kim, S. Y., Yang, J. M., … & Yon, D. K. (2021). Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study. The Lancet Rheumatology, 3(10), e698-e706.
[29] Liu, X., Wang, H., Shi, S., & Xiao, J. (2021). Association between IL-6 and severe disease and mortality in COVID-19 disease: a systematic review and meta-analysis. Postgraduate Medical Journal.
[30] Abbas, H. A.; Abed, S.M.; Iqbal, M. N. (2022) Levels of IL-37 and IgA among pneumonia patients. Biochem. Cell. Arch. 22, 319-324.
[31] Karwaciak, I., Sałkowska, A., Karaś, K., Dastych, J., & Ratajewski, M. (2021). Nucleocapsid and spike proteins of the coronavirus SARS-CoV-2 induce il6 in monocytes and macrophages-Potential implications for cytokine storm syndrome. Vaccines, 9(1), 54.
[32] Orlov, M., Wander, P. L., Morrell, E. D., Mikacenic, C., & Wurfel, M. M. (2020). A case for targeting Th17 cells and IL-17A in SARS-CoV-2 infections. The Journal of Immunology, 205(4), 892-898.
[33] Kang, Y. W., Lee, S. C., Jeon, S. M., & Jo, E. K. (2021). Roles of Interleukin-17 and Th17 Responses in COVID-19. Journal of Bacteriology and Virology, 51(3), 89-102.
[34] Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., … & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8(4), 420-422.
[35] Salinas, T. R. W., Zheng, B., Routy, J. P., & Ancuta, P. (2020). Targeting the interleukin‐17 pathway to prevent acute respiratory distress syndrome associated with SARS‐CoV‐2 infection. Respirology (Carlton, Vic.).
[36] Mangodt, T. C., Van Herck, M. A., Nullens, S., Ramet, J., De Dooy, J. J., Jorens, P. G., & De Winter, B. Y. (2015). The role of Th17 and Treg responses in the pathogenesis of RSV infection. Pediatric Research, 78(5), 483-491.
[37] Mahallawi, W. H., Khabour, O. F., Zhang, Q., Makhdoum, H. M., & Suliman, B. A. (2018). MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 104, 8-13.
[38] De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., … & Cossarizza, A. (2020). Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nature communications, 11(1), 1-17.
[39] Mikacenic, C., Hansen, E. E., Radella, F., Gharib, S. A., Stapleton, R. D., & Wurfel, M. M. (2016). IL-17A is associated with alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Critical care medicine, 44(3), 496.
[40] Gonzalez, S. M., Siddik, A. B., & Su, R. C. (2021). Regulated Intramembrane proteolysis of ACE2: a potential mechanism contributing to COVID-19 pathogenesis?. Frontiers in Immunology, 12, 612807.
[41] Han, K., Blair, R. V., Iwanaga, N., Liu, F., Russell-Lodrigue, K. E., Qin, Z., … & Qin, X. (2021). Lung expression of human angiotensin-converting enzyme 2 sensitizes the mouse to SARS-CoV-2 infection. American journal of respiratory cell and molecular biology, 64(1), 79-88.
[42] Sodhi, C. P., Nguyen, J., Yamaguchi, Y., Werts, A. D., Lu, P., Ladd, M. R., … & Jia, H. (2019). A dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice. The Journal of Immunology, 203(11), 3000-3012.
[43] Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., … & van Goor, H. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of pathology, 251(3), 228-248
[44] Song, J., Zeng, M., Wang, H., Qin, C., Hou, H. Y., Sun, Z. Y., … & Liu, Z. (2021). Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID‐19. Allergy, 76(2), 483-496.
[45] Gurczynski, S. J., & Moore, B. B. (2018). IL-17 in the lung: the good, the bad, and the ugly. American Journal of Physiology-Lung Cellular and Molecular Physiology, 314(1), L6-L16.