The Role of IL-6 and IL-17 in SARS CoV-2 Patients with Secondary Bacterial Pneumonia

Main Article Content

May Raheem Ali
Suha Maher Abed
Mohanad Hasan Mahmood AL-Izzi

Abstract

The current study was conducted in Kirkuk city at Al-Shifaa 14 hospital from November 2021 to March 2022, indicated the bacteria causing secondary pneumonia isolated from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients and the role of IL-6 and IL-17 in these infection.


Sputum samples were used to obtain the bacterial isolates, and API testing was used to confirm the species level identification. Using an enzyme-linked immunosorbent assay (sandwich ELISA), the levels of IL-6 and IL-17 in the blood were evaluated. The study documented several bacterial species in a single infection (56/87.5%) or mixed bacterial infection (8/12.5%). The most common isolated bacteria species was Klebsiella pneumoniae (35.95%) followed by Staphylococcus aureus (31.25%), E. coli (17.19%), Pseudomonas aeruginosa (10.94%), and (1.56%) for each of Klebsiella oxytoca, Acinetobacter baumannii and Cronobacter sakazakii. The study recorded a high significant difference (P <0.01) between the patients (22.2±6.82) pg/mL and the control group (58.39±11.15) pg/ mL concerning IL-6 also a high significant difference (P <0.01) between the patients (101.79±27.13) pg/mL and the control group (58.39±11.15) pg/mL concerning IL-17.


In conclusion, K. pneumoniae and S. aureus were the predominant isolated bacteria from COVID-19 patient's lung and there was a highly significant increase in IL-6 and IL-17 levels in secondary bacterial pneumonia in COVID-19 patients.

Article Details

How to Cite
May Raheem Ali, Suha Maher Abed, & Mohanad Hasan Mahmood AL-Izzi. (2023). The Role of IL-6 and IL-17 in SARS CoV-2 Patients with Secondary Bacterial Pneumonia. Tikrit Journal of Pure Science, 28(1), 15–20. https://doi.org/10.25130/tjps.v28i1.1260
Section
Articles

References

[1] Wang, C., Horby, P. W., Hayden, F. G., and Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The lancet, 395(10223), 470-473.

[2] Morens, D. M., Taubenberger, J. K., & Fauci, A. S. (2008). Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases, 198(7), 962-970.

[3] Morris, D. E., Cleary, D. W., & Clarke, S. C. (2017). Secondary bacterial infections associated with influenza pandemics. Frontiers in microbiology, 8, 1041.

[4] Feng, Y., Ling, Y., Bai, T., Xie, Y., Huang, J., Li, J., ... & Qu, J. (2020). COVID-19 with different severities: a multicenter study of clinical features. American journal of respiratory and critical care medicine, 201(11), 1380-1388.

[5] Bengoechea, J. A., & Bamford, C. G. (2020). SARS‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID‐19?. EMBO molecular medicine, 12(7), e12560.

[6] Rawson, T. M., Moore, L. S., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., ... & Holmes, A. (2020). Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clinical infectious diseases, 71(9), 2459-2468.

[7] Du, R. H., Liang, L. R., Yang, C. Q., Wang, W., Cao, T. Z., Li, M., … & Shi, H. Z. (2020). Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal, 55(5).

[8] Rouzé, A., Martin-Loeches, I., Povoa, P., Makris, D., Artigas, A., Bouchereau, M., … & Nseir, S. (2021). Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive care medicine, 47(2), 188-198.

[9] De Bruyn, A., Verellen, S., Bruckers, L., Geebelen, L., Callebaut, I., De Pauw, I., Stessel, B., & Dubois, J. (2022). Secondary infection in COVID-19 critically ill patients: a retrospective single-center evaluation. BioMed Central infectious diseases, 22(1), 1-7.

[10] Teijaro, J. R., Walsh, K. B., Rice, S., Rosen, H., & Oldstone, M. B. (2014). Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proceedings of the National Academy of Sciences, 111(10), 3799-3804.

[11] Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 20(6), 355–362.

[12] Conti, P., D’Ovidio, C., Conti, C., Gallenga, C. E., Lauritano, D., Caraffa, A., Kritas, S. K., & Ronconi, G. (2019). Progression in migraine: role of mast cells and pro-inflammatory and anti-inflammatory cytokines. European journal of pharmacology, 844, 87-94.

[13] Al-Rawi Kh. M., Entrance to Statistics, 2ed ed., 2000, Babylon, Iraq.

[14] d'Humières, C., Patrier, J., Lortat-Jacob, B., Tran-Dinh, A., Chemali, L., Maataoui, N., Rondinaud, E., Ruppé, E., Burdet, C., Ruckly, S., Montravers, P., Timsit, J. F., & Armand-Lefevre, L. (2021). Two original observations concerning bacterial infections in COVID-19 patients hospitalized in intensive care units during the first wave of the epidemic in France. Public library of sience one, 16(4), e0250728.

[15] Pourajam, S., Kalantari, E., Talebzadeh, H., Mellali, H., Sami, R., Soltaninejad, F., ... & Solgi, H. (2022). Secondary Bacterial Infection and Clinical Characteristics in Patients With COVID-19 Admitted

to Two Intensive Care Units of an Academic Hospital in Iran during the First Wave of the Pandemic. Frontiers in cellular and infection microbiology, 141.

[16] Ameen, H. M., Mahdi, N. B., & Eldin, A. M. K. (2021). Investigation of secondary Bacterial Lung Infections associated with Corona virus Covid19, and the extent of their Resistance to some types of Antibiotics in the city of Kirkuk. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 9153-9161.

[17] Cillóniz, C., Ewig, S., Ferrer, M., Polverino, E., Gabarrús, A., Puig de la Bellacasa, J., ... & Torres, A. (2011). Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis. Critical care, 15(5), 1-10.

[18] Qu, J., Cai, Z., Liu, Y., Duan, X., Han, S., Liu, J., ... & Yang, L. (2021). Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Frontiers in cellular and infection microbiology, 129.

[19] Gayam, V., Konala, V. M., Naramala, S., Garlapati, P. R., Merghani, M. A., Regmi, N., ... & Adapa, S. (2020). Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID‐19 and Mycoplasma pneumoniae in the USA. Journal of medical virology, 92(10), 2181-2187.

[20] Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Møller, R., … & Albrecht, R. A. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 181(5), 1036-1045

[21] Santa Cruz, A., Mendes-Frias, A., Oliveira, A. I., Dias, L., Matos, A. R., & Carvalho, A. (2021). Interleukin-6 is a biomarker for the development of fatal severe acute respiratory syndrome coronavirus 2 pneumonia. Frontiers in Immunology. 2021; 12: 613422.

[22] Herold, T., Jurinovic, V., Arnreich, C., Hellmuth, J. C., von Bergwelt-Baildon, M., Klein, M., & Weinberger, T. (2020). Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. MedRxiv.

[23] Holub, M., Lawrence, D. A., Andersen, N., Davidová, A., Beran, O., Marešová, V., & Chalupa, P. (2013). Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of inflammation, 2013.

[24] Abed, S. M., Al Boraqy, M. M., & Fatlawi, S. N. A. (2018). Role of Procalcitonin in Detection of Bacterial Pneumonia. EXECUTIVE EDITOR, 9(12), 12638.

[25] Recovery Collaborative Group. (2021). Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet, 397(10285): 1637-1645.

[26] Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., & Zhang, Y. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal transduction and targeted therapy, 5(1), 1-8.

[27] Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in immunology, 1446.

[28] Shin, Y. H., Shin, J. I., Moon, S. Y., Jin, H. Y., Kim, S. Y., Yang, J. M., … & Yon, D. K. (2021). Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study. The Lancet Rheumatology, 3(10), e698-e706.

[29] Liu, X., Wang, H., Shi, S., & Xiao, J. (2021). Association between IL-6 and severe disease and mortality in COVID-19 disease: a systematic review and meta-analysis. Postgraduate Medical Journal.

[30] Abbas, H. A.; Abed, S.M.; Iqbal, M. N. (2022) Levels of IL-37 and IgA among pneumonia patients. Biochem. Cell. Arch. 22, 319-324.

[31] Karwaciak, I., Sałkowska, A., Karaś, K., Dastych, J., & Ratajewski, M. (2021). Nucleocapsid and spike proteins of the coronavirus SARS-CoV-2 induce il6 in monocytes and macrophages-Potential implications for cytokine storm syndrome. Vaccines, 9(1), 54.

[32] Orlov, M., Wander, P. L., Morrell, E. D., Mikacenic, C., & Wurfel, M. M. (2020). A case for targeting Th17 cells and IL-17A in SARS-CoV-2 infections. The Journal of Immunology, 205(4), 892-898.

[33] Kang, Y. W., Lee, S. C., Jeon, S. M., & Jo, E. K. (2021). Roles of Interleukin-17 and Th17 Responses in COVID-19. Journal of Bacteriology and Virology, 51(3), 89-102.

[34] Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., … & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, 8(4), 420-422.

[35] Salinas, T. R. W., Zheng, B., Routy, J. P., & Ancuta, P. (2020). Targeting the interleukin‐17 pathway to prevent acute respiratory distress syndrome associated with SARS‐CoV‐2 infection. Respirology (Carlton, Vic.).

[36] Mangodt, T. C., Van Herck, M. A., Nullens, S., Ramet, J., De Dooy, J. J., Jorens, P. G., & De Winter, B. Y. (2015). The role of Th17 and Treg responses in the pathogenesis of RSV infection. Pediatric Research, 78(5), 483-491.

[37] Mahallawi, W. H., Khabour, O. F., Zhang, Q., Makhdoum, H. M., & Suliman, B. A. (2018). MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 104, 8-13.

[38] De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., … & Cossarizza, A. (2020). Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nature communications, 11(1), 1-17.

[39] Mikacenic, C., Hansen, E. E., Radella, F., Gharib, S. A., Stapleton, R. D., & Wurfel, M. M. (2016). IL-17A is associated with alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Critical care medicine, 44(3), 496.

[40] Gonzalez, S. M., Siddik, A. B., & Su, R. C. (2021). Regulated Intramembrane proteolysis of ACE2: a potential mechanism contributing to COVID-19 pathogenesis?. Frontiers in Immunology, 12, 612807.

[41] Han, K., Blair, R. V., Iwanaga, N., Liu, F., Russell-Lodrigue, K. E., Qin, Z., … & Qin, X. (2021). Lung expression of human angiotensin-converting enzyme 2 sensitizes the mouse to SARS-CoV-2 infection. American journal of respiratory cell and molecular biology, 64(1), 79-88.

[42] Sodhi, C. P., Nguyen, J., Yamaguchi, Y., Werts, A. D., Lu, P., Ladd, M. R., … & Jia, H. (2019). A dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice. The Journal of Immunology, 203(11), 3000-3012.

[43] Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., … & van Goor, H. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of pathology, 251(3), 228-248

[44] Song, J., Zeng, M., Wang, H., Qin, C., Hou, H. Y., Sun, Z. Y., … & Liu, Z. (2021). Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID‐19. Allergy, 76(2), 483-496.

[45] Gurczynski, S. J., & Moore, B. B. (2018). IL-17 in the lung: the good, the bad, and the ugly. American Journal of Physiology-Lung Cellular and Molecular Physiology, 314(1), L6-L16.