Synthesis, characterisation and biological activities of N-phenyl-ethan-1-one-2,4-dimethyl-1,3-butadiene-1,4-thiazin derivatives

Main Article Content

Nabaz Abdulmajeed Mohammad Salih

Abstract

A facile synthesis of some new 1, 2- thiazine derivatives by the Claisen-Schmidt reaction-induced aldolic condensation of enolizable aromatic ketones with substituted benzaldehydes, and then they were treated with urea and thiourea to obtain the corresponding pyrimidine derivatives. IR, 1H and 13C-NMR spectroscopy were used to analyze all produced substances.  The synthesized compounds (5, 9-11 and 14-15) were screened for their biological activity against two species of bacteria and fungi according to the gram stain, and all compounds indicated growth inhibition against Escherichia coli, Staphylococcus aureus, and fungi respectively with different inhibition zones starting from 11 to 26 mm. In all cases, the used two doses were (10 mg/ 1 ml in DMSO) and (20 mg/ 1ml DMSO).

Article Details

How to Cite
Nabaz Abdulmajeed Mohammad Salih. (2023). Synthesis, characterisation and biological activities of N-phenyl-ethan-1-one-2,4-dimethyl-1,3-butadiene-1,4-thiazin derivatives. Tikrit Journal of Pure Science, 28(1), 21–28. https://doi.org/10.25130/tjps.v28i1.1261
Section
Articles

References

[1] Voichita, M. (2012). Memory of Chirality : Synthesis of enantiopure sultams derived from α -amino acids. PhD thesis, Università degli studi di milano, Italy: pp 144. (Attached as PDF)

[2] Mohamad, A. S. etal. (2010). Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. European Journal of Pharmacology, 647 (1–3): 103–109.

[3] Mithun, R. Johra, K.; Abdul Aziz, B.; Randa, M.; Emmanuel, I.; Tripti, S.; Shubham, J. and Atul, R. (2021). Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 26 (23): 1–21.

[4] Serkan, K.; Ibrahim, D. ; Dogukan, M.; Mehmet, N. A. ;Hakan, Ü. & Şevki, A. (2021). New cytotoxic chalcone derivatives from Astragalus ponticus Pall. Natural Product Research, 36 (18).

[5] Wenjing, L.; Min, H.; Yongjun, L.; Zhiyun, P. and Guangcheng, W. (2022). A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 37 (1): 9–38.

[6] Junichi, S.; Hiromichi, K.; Kenichi, N.; Kazuo, M.; Masaaki, N.; Katsuhiro, K.; Yoshinori, A. and Kohei, K. (2016). Cloning and functional analysis of three chalcone synthases from the flowers of safflowers Carthamus tinctorius. Natural Product Communications, 11 (6): 787–790.

[7] Gosavi, S. A.; Nandal, D. H. and Pawar, S. S. (2019). Synthesis and biological evaluation of some novel mannich bases of isoxazoline derivatives as possible antimicrobial agents. Asian Journal of Chemistry, 31 (12): 2821–2826.

[8] Kanagarajan, V.; Thanusu, J. and Gopalakrishnan, M. (2010). Synthesis and in vitro microbiological evaluation of an array of biolabile 2-morpholino-N-(4,6-diarylpyrimidin-2-yl)acetamides. European Journal of Medicinal Chemistry, 45 (4): 1583–1589.

[9] Aastha, P.; Priyanka, R.; Navneet, K.; Pratima, S. and Kishore D. (2013). An Efficient Synthesis and Applications of Chalcones in Organic Synthesis. International Journal of Chemical and Pharmaceutical Sciences, 4 (3): 19.

[10] Duha, D.; Bijender, S.; Surinder, K. M.; Vinod, K. and Ramesh, K. (2020). Simple and solvent free practical procedure for chalcones: An expeditious, mild and greener approach. Current Research in Green and Sustainable Chemistry, 3 (October): 100041.

[11] Syed, L. B. and AbdulNaeem. (2016). Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 21 (8):

[12] Mohd, R. A.; Girija, S.; Nasreen, B.; Ravichandra, S. and Raghavendra, M.(2011). Synthesis and cytotoxic, anti oxidant activites of new chalcone derivatives. Rasayan Journal of Chemistry, 4 (2): 289–294.

[13] Go, M.; Wu, X. and Liu, X. (2005). Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Current Medicinal Chemistry, 12 (4), 483–499.

[14] Sylvie, D.; Richard, F.; John, A. H.; Alex, K.; Nicholas, J. L.; Alan, T. M. and David, R. (1998). Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic and Medicinal Chemistry Letters, 8 (9): 1051–1056.

[15] Sweety, S.; Kumar, K.; Nepali, S.; Sapra, O. P.; Suri, K. L.; Dhar, G. S.; Sarma and Saxena. A. K. (2010). Synthesis and biological evaluation of chalcones having heterosubstituent(s). Indian Journal of Pharmaceutical Sciences, 72 (6): 801–806.

[16] Alain, V. (2006). New syntheses and potential antimalarial activities of new “retinoid-like chalcones. European Journal of Medicinal Chemistry, 41 (1): 142–146.

[17] Malhotra, B.; Malhotra, B.; Onyilagha, C. J.; Bohm, B. A.; Towers, G. H. N.; James, D.; Harborne, J. B. and French, C. J. (1996). Inhibition of tomato ringspot virus by flavonoids. Phytochemistry, 43 (6): 1271–1276.

[18] Nizami, D.; Fatih, P.; Derya, A. ; Abdullah, A.; Emrah, A.; Funda, C.; Erhan, T.; Baris, A.; Serdar, B.;Oztekin, A. (2021). New chalcone derivatives as effective against SARS-CoV-2 agent. Int J Clin Pract, 75(12): e14846.

[19] Satyanarayana, M. etal (2004). Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic and Medicinal Chemistry, 12 (5): 883–889.

[20] Marek, T. K.; Wojciech, K.; Michal, S.; Andrzej, S.; Roland, W.; Ewa, A. and Zofia, Z. (2007). Synthesis of isomeric, oxathiolone fused chalcones, and comparison of their activity toward various microorganisms and human cancer cells line. Chemical and Pharmaceutical Bulletin, 55 (5): 817–820.

[21] Opletalová, V. (2000). Chalcones and their heterocyclic analogs as potential therapeutic agents in bacterial diseases. Ceska a Slovenska farmacie, 49 (6): 278–284.

[22] Sung, H. L. Geom, S. S.; Ji, Y. K.; Xing, Y. J.; Hee-Doo, K.; Dong, H. S. (2006). Heme oxygenase 1 mediates anti-inflammatory effects of 2′,4′, 6′-tris(methoxymethoxy) chalcone. European Journal of Pharmacology, 532 (1–2): 178–186.

[23] Jayapal, M. R.; Prasad, K. S. and Sreedhar, N. Y. (2010). Synthesis and characterization of 2,4-dihydroxy substituted chalcones using aldol condensation by SOCl2/EtOH. J. Chem. Pharm. Res, 2 (3): 127–132.

[24] Paula, B. (2006). Synthesis of chalcone analogues with increased antileishmanial activity. Bioorganic and Medicinal Chemistry, 14 (5): 1538–1545.

[25] Yun, F.; Dan, L.; Huanan, Z.; Xiaoli, R.; Baoan, S.; Deyu, H. and Xiuhai, G. (2020). New chalcone derivatives: synthesis, antiviral activity and mechanism of action. The Royal Society of Chemistry, 10, 24483–24490.

[26] Nadia A. A. Elkanzi,* Hajer Hrichi, Ruba A. Alolayan, Wassila Derafa, Fatin M. Zahou, and Rania B. Bakr. (2022). Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. American Chemical Society, 7, 27769−27786.

[27] Panda, S. and Chowdary, P. V. R. (2008). Synthesis of novel indolyl-pyrimidine antiinflammatory, antioxidant and antibacterial agents. Indian Journal of Pharmaceutical Sciences, 70 (2): 208–215.

[28] Roberts, D. W. and Williams, D. L. (1987). Sulton Chemistry. Tetrahedron, 43(6): 1027-1062.

[29] Rostam, R. B. (1997). Synthesis of some new dereivatives of the brominated 1,2-thiazines using ultrasound technique . M.Sc. thesis, Salahaddin University, Erbil, Iraq: pp 132.