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ABSTRACT 

Suppose that 𝑄(𝜆) = 𝜆𝑚𝐴𝑚 + 𝜆𝑚−1𝐴𝑚−1 + ⋯ + 𝐴0  is a 

polynomial matrix operator where 𝐴𝑖 ∈ 𝑀𝑛(ℂ)  for 𝑖 =
0,1, … , 𝑚, are 𝑛 × 𝑛 complex matrix and let 𝜆 be a complex 

variable. For an 𝑛 × 𝑛 Hermitian matrix 𝑆, we define the 𝑉-

numerical range of polynomial matrix of 𝑄(𝜆) as𝑉𝑆(𝑄(𝜆)) =
{ 𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈ ℂ𝑛 , ⟨𝑥, 𝑥⟩𝑆 ≠ 0 } , 

where ⟨𝑥, 𝑦⟩𝑆 = 𝑦∗𝑆𝑥. In this paper we study  𝑉𝑆(𝑄(𝜆))  and 

our emphasis is on the geometrical properties of 𝑉𝑆(𝑄(𝜆)). 

We consider the location of  𝑉𝑆(𝑄(𝜆))   in the complex plane 

and  a theorem concerning  the boundary of 𝑉𝑆(𝑄(𝜆))   is also 

obtained.  Possible generalazations of our results including 

their extensions to bounded linerar operators on an infinite 

dimensional Hilbert space are described. 
 

1. Introduction 
Let 𝐴 ∈ 𝑀𝑛(ℂ). The numerical range (the field of 

value) of 𝐴 defined and denoted by 𝑊(𝐴) =
{𝑥∗𝐴𝑥: 𝑥 ∈ ℂ𝑛 , 𝑥∗𝑥 = 1}  

where 𝑥∗ is the conjugate transpose of 𝑥. Many 

researchers have dedicated their work to the study 

of numerical ranges not only in Hilbert spaces but 

also in Banach spaces and Banach Algebras, 

because it is very useful tool in studying and 

understanding the spectral analysis of unbounded 

and bounded linear operators in Hilbert spaces as 

explained in most functional analysis and matrix 

analysis textbooks [15],[16] and [17].  

We can see that the numerical range is the image of 

the Euclidean unit ball in ℂ𝑛, which is a compact 

and connected set, under the continuous mapping 

𝑥 → 𝑥∗𝐴𝑥. Therefore, 𝑊(𝐴) is a compact and 

connected set. 𝑊(𝐴) is also a convex set. For 

infinite dimensional Hilbert space we have the 

following: Let 𝐻 be a complex Hilbert space with 

inner product ⟨. , . ⟩ and let 𝐵(𝐻) be the algebra of 

all bounded linear operators on 𝐻. For 𝐴 ∈ 𝐵(𝐻), 
the numerical range of A is the set 

𝑊(𝐴) = {𝑢 ∈ ℂ: ⟨𝐴𝑢, 𝑢⟩,  for some 𝑢 ∈ 𝐻, ||𝑢|| =

1}.  

In this context, 𝑊(𝐴) is convex, bounded but not 

necessarily closed. For properties on numerical 

range on infinite dimensional Hilbert spaces we 

refer to [18] and [19]. 

The concept of numerical range (the field of value) 

has been generalized in several directions, some of 

the generalizations that relevant to this study. The 

notation of the numerical range of matrix 

polynomials was first introduce by P. H. Muller in 

1954 [11]. It has been systematically studied over 

the last decade. Moreover several of interesting 

results have been obtained (see e.g., [12], [13] and 

[14]). 

Suppose that 𝑀𝑛(ℂ) is the algebra of all 𝑛 × 𝑛 

complex matrices, and consider the polynomial 

matrix 

𝑄(𝜆) = 𝐴𝑚𝜆𝑚 + 𝐴𝑚−1𝜆𝑚−1 + ⋯ + 𝐴0        (1)  

with 𝐴𝑖 ∈ 𝑀𝑛(ℂ) for 𝑖 = 0,1, … , 𝑚, and 𝜆 is a 

complex variable. Define the numerical range of 

𝑄(𝜆) as 

𝑊(𝑄(𝜆)) =
{𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some nonzero 𝑥 ∈
ℂ𝑛 , ⟨𝑥, 𝑥⟩ = 1},          (2)  

the concept coincides to the well-known (classical) 

numerical range when 𝑄(𝜆) = 𝜆𝐼 − 𝐴, defined by 

http://tjps.tu.edu.iq/index.php/j
https://doi.org/10.25130/tjps.v28i1.1268
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𝑊(𝐴) = {𝑥∗𝐴𝑥, for some  𝑥 ∈ ℂ𝑛, 𝑥∗𝑥 = 1}.      (3)  

In the study of matrices and operators, the 

numerical range is a useful instrument that has been 

well researched [1] and [2]. 

Similar to the classical numerical range of 𝐴, the 

numerical range of a matrix polynomial is always 

closed and contains its spectrum 𝜎(𝑄) = {𝜆 ∈ ℂ ∶
 𝑑𝑒𝑡 𝑄(𝜆) = 0 }.(e.g., see [3], [10] and its 

references) 

Replacing in (2) the Euclidean inner product with 

the indefinite inner product on ℂ𝑛, it is known [3] 

that there exists an invertible Hermitian matrix 𝑆 

such that ⟨𝑥, 𝑦⟩𝑆 = ⟨𝑆𝑥, 𝑦⟩. Hence, we introduced 

𝑉- numerical range of matrix polynomial of 𝑄(𝜆) as 

𝑉𝑆(𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈ ℂ𝑛 , ⟨𝑥, 𝑥⟩𝑆 ≠ 0}, (4)  

which coincides with the positive 𝑉-numerical 

range of 𝑄(𝜆): 

𝑉𝑆
+(𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈

ℂ𝑛 , ⟨𝑥, 𝑥⟩𝑆 = 1}.        (5)  

Since 𝑆 is positive definite, 𝑆 = 𝑋∗ 𝑋 for some 

nonsingular 𝑋 and it is simple to prove that 

𝑉𝑆(𝑄(𝜆)) = 𝑉𝑆
+(𝑄(𝜆)) = 𝑊(𝑋 𝑄(𝜆) 𝑋−1). In 

particular, 𝑉𝑆
+(𝑄(𝜆)) = 𝑊(𝑆

−1

2 𝑄(𝜆)𝑆
−1

2 ), where 

𝑆
−1

2  denotes the inverse of 𝑆
1

2 and 𝑆1/2 denotes the 

(unique) positive definite matrix that satisfies 

(𝑆1/2)2 = 𝑆. 

Many properties of 𝑊(𝑄(𝜆) ), can be extended to 

𝑉𝑆(𝑄(𝜆)) and 𝑉𝑆
+(𝑄(𝜆)) if 𝑆 is positive definite. 

Moreover, the concept coincides to the well-known 

𝑉-numerical range when 𝑄(𝜆) = 𝜆𝐼 − 𝐴, defined by 

𝑉𝑆(𝐴) = {
⟨𝐴𝑥,𝑥⟩𝑆

⟨𝑥,𝑥⟩𝑆
,for some 𝑥 ∈ ℂ𝑛 , ⟨𝑥, 𝑥⟩𝑆 ≠ 0} .  

Currently under investigation is the numerical range 

of an operator defined on an infinite inner product 

space (see [1] and references therein). The 

fundamental characteristics of the classical 

numerical range are compactness and convexity. 

But 𝑉𝑆(𝐴) may be neither closed nor bounded in 

contrast to the classical situation. However, 𝑉𝑆(𝐴)  

is the union of two convex sets, where 𝑉𝑆(𝐴) =
𝑉𝑆

+(𝐴) ∪ 𝑉𝑆
−(𝐴), even if it could not be convex. 

where 

𝑉𝑆
+(𝐴) = {⟨𝐴𝑥, 𝑥⟩,for some 𝑥 ∈ ℂ𝑛, ⟨𝑥, 𝑥⟩𝑆 = 1}  

and 

𝑉𝑆
−(𝐴) = {⟨𝐴𝑥, 𝑥⟩,for some 𝑥 ∈ ℂ𝑛, ⟨𝑥, 𝑥⟩𝑆 = −1}  

Bayasgalan [4] proved that if 𝐴 is positive definite, 

its closure contains the spectrum of 𝐴.  It is difficult 

to produce an accurate computer plot of this set 

because the numerical ranges of the matrix 

polynomials in an indefinite inner product space 

like 𝑉𝑆 (𝐴) are neither bounded nor closed. The 

description of 𝑉𝑆(𝑄(𝜆)) for 𝐴𝑖 ∈ 𝑀𝑛(ℂ) and 𝑛 > 2 

is mor complicated, so it would be useful to have a 

code that generates graphical representations. On 

the other hand, 𝑉𝑆(𝑄(𝜆)) may not be convex. 

During the recent decades, the 𝑆-numerical range 

and the numerical range of a matrix polynomial has 

been extensively studied by many researchers (see, 

[5], [6], [7], [8], [9]and the references therein). 

This article is a first study of 𝑉-numerical range of 

matrix polynomials of an indefinite inner product 

space. In section 2 we discuss some fundamental 

properties of 𝑉𝑆 (𝑄𝜆)) based on the results of [1] 

and [7], and we consider the location of 𝑉-

numerical range of matrix polynomials in the 

complex plane and when it is bounded. On the other 

hand, we prove that the number of connected 

components of the 𝑉-numerical range of 𝑄(𝜆) in (1) 

does not excced 𝑚, and we study the boundary of 

𝑉𝑆(𝑄(𝜆)). Furthermore, in section 3 we extend the 

definition of 𝑉𝑆(𝑄(𝜆)) to 𝑉-numerical range 

polynomial operator of infinite dimensional Hilbert 

space. 

2. Main Results 
In the following proposition, we describe some 

fundamental properties of 𝑉𝑆(𝑄(𝜆)) that are easily 

verifiable. 

Proposition 2.1: Let 𝑄(𝜆) be as in Eq. (1), 𝐴𝑚 ≠ 0 

and 𝑆 is a  Hermitian matrix then 

i) 𝑉𝑆(𝑄(𝜆 + 𝛼)) = 𝑉𝑆(𝑄(𝜆)) − 𝛼 for any 𝛼 ∈ ℂ. 

ii) 𝑉𝑆(𝛼𝑄(𝜆)) = 𝑉𝑆(𝑄(𝜆)) for any non-zero 𝛼 ∈ ℂ. 

iii) If  𝑥∗𝐴𝑖𝑥 = 0 for all 𝑖 then 𝑉𝑆(𝑄(𝜆)) is a hole 

complex plane. 

iv) For any unitary matrix 𝑈, 𝑉𝑆(𝑈∗𝑄(𝜆)𝑈) =
𝑉𝑆(𝑄(𝜆)) if and only if 𝑈∗𝑆𝑈 = 𝑆. 

v) If 𝑃(𝜆) = 𝐴0𝜆𝑚 + 𝐴1𝜆𝑚−1 + ⋯ + 𝐴𝑚 then 

𝑉𝑆(𝑃(𝜆)) ∖ {0} = {𝜇−1 ∈ ℂ: 𝜇 ∈ 𝑉𝑆(𝑄(𝜆))} 
The fundamental properties of the classical 

numerical range are compactness and convexity. 

Condition (iii) in Remark 2.2 demonstrates that 

𝑉𝑆(𝑄(𝜆)) is closed if 𝑆 is positive definite. 

Remark 2.2: The same properties are holding when 

𝑉𝑆(𝑄(𝜆)) is replaced by 𝑉𝑆
±(𝑄(𝜆)). Furthermore, 

for these sets we have additional properties. 

i) If 𝑆 is positive definite then 𝑉𝑆
−(𝑄(𝜆)) is empty. 

ii) If 𝑆 is negative definite then 𝑉𝑆
+(𝑄(𝜆)) is 

empty. 

iii) 𝑉𝑆
+(𝑄(𝜆)) and 𝑉𝑆

−(𝑄(𝜆)) are closed sets. 

The following example shows that, 𝑉𝑆
+(𝑄(𝜆)) need 

not be connected or bounded. 

Example 2.3: Let 𝑄(𝜆) = 𝜆𝑚 (
−1 0
0 2

) − (
1 0
0 2

) 

and 𝑆 = (
1 0
0 2

). Then 

𝑉𝑆
+(𝑄(𝜆)) = {𝜆 ∈ ℂ: 𝜆𝑚𝑞 − 1 = 0 for some 𝑞 ∈

[−1,1]}  

= {𝑟𝑒𝑖𝜃: 𝑟 ≥ 1 and 𝜃 = 𝑘𝜋/𝑚, 𝑘 = 0,1, … ,2𝑚 −
1}  

There are (2𝑚) unbounded connected components. 

The following example shows that the convexity 

𝑉𝑆
+(𝑄(𝜆)) is not necessary.  

Example 2.4: Let 𝑄(𝜆) = 𝜆𝑚 (
1 0
0 2

) − (
−1 0
0 2

) 

and 𝑆 = (
1 0
0 2

). Then 

𝑉𝑆
+(𝑄(𝜆)) = {𝜆 ∈ ℂ: 𝜆𝑚 − 𝑞 = 0 for some 𝑞 ∈

[−1,1]}  

= {𝑟𝑒𝑖𝜃: 0 ≤ 𝑟 ≤ 1 and 𝜃 = 𝑘𝜋/𝑚, 𝑘 =
0,1, … ,2𝑚 − 1}  
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has a single non-convex component. 

Theorem 2.5: If 𝑆 is a positive definite, then 

𝑉𝑆
+(𝑄(𝜆)) ⊆ 𝑊(𝑄(𝜆)). 

Proof: Let 𝜆 ∈ 𝑉𝑆
+(𝑄(𝜆)). Then there exsits 𝑆-unit 

vector 𝑥 ∈ ℂ𝑛 such that ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0 and 

⟨𝑆𝑥, 𝑥⟩ = 1. Since 𝑆 is a positive definite then the 

positve definite matrix 𝑆
1

2 exist and 𝑆
1

2𝑆
1

2 = 𝑆. 

Choose 𝑦 = 𝑆
1

2𝑥 then it is clear ⟨𝑦, 𝑦⟩ = 1. 

0 = ⟨𝑄(𝜆)𝑥, 𝑥⟩ = ⟨𝑄(𝜆)𝑆
−1

2 𝑥, 𝑆
−1

2 𝑥⟩ =

⟨(𝑆
−1

2 )
∗

𝑄(𝜆)𝑆
−1

2 , 𝑥⟩  

then by properties of 𝑊(𝑄(𝜆)) in  𝜆 ∈ 𝑊(𝑄(𝜆)). 

Lemma 2.6: Suppose that 𝐴 ∈ 𝑀𝑛(ℂ) and 𝑆 is a 

𝑛 × 𝑛 Hermitian matrix. Then  𝑉𝑆
+(𝐴𝑚) is either 

has interior point or singleton. 

Proof: Suppose that 𝑉𝑆
+(𝐴𝑚) is neither has interior 

point nor singleton, then by convexity of 𝑉𝑆
+(𝐴𝑚)  

and Schur theorem we can assume that 𝑉𝑆
+(𝐴𝑚) =

[𝜁, 𝜂] ⊂ ℝ and without loss of generality we 

consider the (2 × 2) case 

𝐴 = (
𝑎 𝑏
0 𝑑

) ,  

where (𝑎, 𝑏, 𝑑) is not of the form (𝑘, 0, 𝑘) (𝑘 ∈
ℂ),and 

𝑆 = (
𝛼 𝛽
𝛽 0

) ,  

where 𝛼 and 𝛽 are non-zero real numbers. Then for 

any 𝑆-unit vectors 𝑥 = (
𝑥
𝑦) with 𝛼(𝑥‾𝑥) + 𝛽(𝑥‾𝑦) +

𝛽(𝑦‾𝑥) = 1 we have 𝑥∗𝐴𝑥 = 𝑎(𝑥‾𝑥) + 𝑏(𝑥‾𝑦) +

𝑑(𝑦‾𝑦) = (𝛼 −
𝑎𝛼

𝛽
)|𝑥|2 + 𝑑|𝑦|2 − 𝑏(𝑦‾𝑥) +

𝑏

𝛽
 . 

Clearly we can find 𝑆-unit vector 𝑥 such that 

𝑥∗𝐴𝑥 ∈ ℂ ∖ ℝ. Thus, 𝑉𝑆
+(𝐴) cannot be a closed 

interval in ℝ. 

The following Theorem shows that 𝑉𝑆
+(𝑄(𝜆)) is 

bounded if and only if zero does not belongs to 

𝑉𝑆
+(𝐴𝑚). 

Theorem 2.7: Let 𝑄(𝜆) be as in Eq. (1) and let 𝑆 be 

a 𝑛 × 𝑛 Hermitian matrix. Then 𝑉𝑆
+(𝑄(𝜆)) is 

bounded if and only if 0 ∉ 𝑉𝑆
+(𝐴𝑚). 

Proof: Consider 𝑉𝑆
+(𝑄(𝜆)) is bounded and 

𝑉𝑆
+(𝑄(𝜆)) = {𝜆 ∈ ℂ; 𝑥∗𝑄(𝜆)𝑥 = 0,for some 𝑥 ∈

ℂ𝑛 , 𝑥∗𝑆𝑥 = 1}, hence all roots of polynomial 

𝑥∗𝑄(𝜆)𝑥 = 0 is bounded. Furthermore, the function 
𝑥∗𝐴𝑘𝑥

𝑥∗𝐴𝑚𝑥
 is a member of every roots where 0 ≤ 𝑘 <

𝑚. So there exist 𝑟 ∈ ℝ such that |
𝑥∗𝐴𝑘𝑥

𝑥∗𝐴𝑚𝑥
| < 𝑟, a 

simple calculation we get that |𝑥∗𝐴𝑚𝑥| > 𝑞 for 

𝑞 ∈ ℝ, by lemma 2.6 0 ∉ 𝑉𝑆
+(𝐴𝑚). Conversely, 

suppose that 𝑉𝑆
+(𝑄(𝜆)) is unbounded then there 

exists 𝜇 ∈ 𝑉𝑆
+(𝑄(𝜆)) such that |𝜇| > 𝑟, for 𝑟 ∈ ℝ. 

Moreover, the function 
𝑥∗𝐴𝑙𝑥

𝑥∗𝐴𝑚𝑥
 is member of every 

roots where 0 ≤ 𝑙 < 𝑚. This implies that there 

exists 0 ≤ 𝑗 < 𝑚 such that the function 
𝑥∗𝐴𝑗𝑥

𝑥∗𝐴𝑚𝑥
 is the 

member of all roots i.e. |
𝑥∗𝐴𝑗𝑥

𝑥∗𝐴𝑚𝑥
| > 𝑟, for 𝑟 ∈ ℝ. A 

simple calculation we get |𝑥∗𝐴𝑚𝑥| < 𝑞 for 𝑞 ∈ ℝ, 

by lemma 2.6 0 ∈ 𝑉𝑆
+(𝐴𝑚). 

The following result can be proved in a similar 

fashion as Theorem 2.7. 

Corollary 2.8: Let 𝑄(𝜆) = 𝐼𝜆𝑚 + 𝐴𝑚−1𝜆𝑚−1 +
⋯ + 𝐴0 be a monic polynomial and let 𝑆 be 𝑛 × 𝑛 a 

Hermitian matrix then 𝑉𝑆
+(𝑄(𝜆)) is bounded. 

For monic polynomial 𝑄(𝜆), the positive 𝑉-

numerical range of  𝑄(𝜆) is always bounded. 

Furthermore we define the inner 𝑉-numerical radius 

�̃�𝑠(𝐴0) = min⟨𝑆𝑥,𝑥⟩=1|𝑥∗𝐴0𝑥| and the outer 𝑉-

numerical radius 𝑟𝑠(𝐴𝑗) = max⟨𝑆𝑥,𝑥⟩=1|𝑥∗𝐴𝑗𝑥| then 

𝑉𝑆
+(𝑄(𝜆)) is located in circular annulus. 

Theorem 2.9: Suppose that 𝑄(𝜆) be a monic matrix 

polynomial and let 𝜆 ∈ 𝑉𝑆
+(𝑄(𝜆)) then 

𝑟1 ≤ |𝜆| ≤ 1 + 𝑟2  

where 

 𝑟1 =
�̃�𝑠(𝐴0)

𝑟𝑠(𝐴0)+max
𝑘≠0

𝑟𝑠(𝐴𝑘)
 , 𝑟2 = max{𝑟𝑠(𝐴𝑘): 𝑘 =

0,1, … , 𝑚 − 1}, �̃�𝑠(𝐴0) is inner 𝑉-numerical radius 

and 𝑟𝑠(𝐴𝑗) is outer 𝑉-numerical radius. 

Proof: Let 𝑥 be any 𝑆-unit vector of ℂ𝑛, the roots of 

polynomial 

𝑥∗𝑄(𝜆)𝑥 = 𝜆𝑚 + 𝑥∗𝐴𝑚−1𝑥𝜆𝑚−1 + ⋯ +
𝑥∗𝐴0𝑥       (6)  

lie in the disc 𝐵0(1 + 𝑅𝑘), where 𝑅𝑘 =
max{𝑟𝑠(𝐴𝑘): 𝑘 = 0,1, … , 𝑚 − 1} ≤ max𝑘𝑟𝑠(𝐴𝑘), 

then obviously 

𝑉𝑆
+(𝑄(𝜆)) ⊂ 𝐵0(1 + 𝑟2)  

Furthermore, every roots of equation (6) lie on or 

outside the circle 

|𝜆| = min
𝑘=1,2,…,𝑚

|𝑥∗𝐴0𝑥|

|𝑥∗𝐴0𝑥|+|𝑥∗𝑆𝐴𝑘𝑥|
  

and consequently we take 

|𝜆| ≥
min|𝑥∗𝐴0𝑥|

max|𝑥∗𝐴0𝑥|+max
𝑘≠0

|𝑥∗𝐴𝑘𝑥|
  

=
�̃�𝑠(𝐴0)

𝑟𝑠(𝐴0)+max
𝑘≠0

𝑟𝑠(𝐴𝑘)
= 𝑟2  

The next theorem shows that the number of 

connected component of the positive 𝑉-numerical 

range of 𝑄(𝜆) does not exceed 𝑚. 

Theorem 2.10: Let 𝑄(𝜆) be as in Eq. (1), where 

𝐴𝑚 ≠ 0 and 𝑆 be a 𝑛 × 𝑛 Hermitian matrix. 

Suppose 𝑉𝑆
+(𝑄(𝜆)) has 𝑟 connected component. 

1) Let 𝑠 be the minimum number of distinct roots 

of the polynomial 𝑥∗𝑄(𝜆)𝑥 with 𝑥∗𝑆𝑥 = 1 such 

that 𝑥∗𝐴𝑚𝑥 ≠ 0 and consider 𝑉𝑆
+(𝐴𝑚) ∖ {0} is 

connected. Then 

𝑟 ≤ 𝑠 ≤ 𝑚  

2) If 𝑠𝑖 is the minimum number of distinct roots of 

the polynomial 𝑥∗𝑄(𝜆)𝑥 with 𝑥∗𝑆𝑥 = 1, and 

consider 𝑉𝑆
+(𝐴𝑚) ∖ {0} has disjoint connected 

component 𝒢1 and 𝒢1 such that 𝑥∗𝐴𝑚𝑥 ∈ 𝒢𝑖  for 

𝑖 = 1,2. Then  

𝑟 ≤ 𝑠1 + 𝑠2 ≤ 2𝑚  

Proof: Consider 𝐺 = {𝑥 ∈ ℂ𝑛 , 𝑥∗𝑆𝑥 = 1}. Let 

𝑢, 𝑣 ∈ 𝑉𝑆
+(𝐴𝑚) then there exist 𝑆-unit vectors 

𝑥, 𝑦 ∈ 𝐺 such that 𝑥∗𝐴𝑚𝑥 = 𝑢 and 𝑦∗𝐴𝑚𝑦 = 𝑣. 

Since 𝑉𝑆
+(𝐴𝑚) is convex set, so the line segment 

[𝑢, 𝑣] lies in 𝑉𝑆
+(𝐴𝑚). 
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i) If 0 ∉ [𝑢, 𝑣] then there exists a continuous 

curve 𝑧: [0,1] → 𝐺 such that 𝑧(0) = 𝑥, 𝑧(1) = 𝜇𝑦 

with |𝜇| = 1 and 𝑧(𝑡)∗𝐴𝑚𝑧(𝑡) ∈ [𝑢, 𝑣] for every 

𝑡 ∈ [0,1] 
ii) If 0 ∈ [𝑢, 𝑣] then we can choose 𝑟 ∈ 𝑉𝑆

+(𝐴𝑚) 

such that 0 ∉ [𝑢, 𝑟] ∪ [𝑟, 𝑣]. Again by using 

convexity of 𝑉𝑆
+(𝐴𝑚) there exists a continuous 

curve 𝑧: [0,1] → 𝐺 such that 𝑧(0) = 𝑥, 𝑧(1) = 𝜇𝑦 

with |𝜇| = 1 and 𝑧(
1

2
) = 𝑟, where 𝑟 = 𝑞∗𝐴𝑚𝑞 and 

𝑞 ∈ 𝐺. So, 𝑧(𝑡)∗𝐴𝑚𝑧(𝑡) ∈ [𝑢, 𝑟] ∪ [𝑟, 𝑣] for every 

𝑡 ∈ [0,1]. 
iii) Finally, suppose 𝑢 = 𝑣. If 𝑉𝑆

+(𝐴𝑚) is a 

singleton, then 𝐴𝑚 = 𝛼𝑆 where 𝛼 is a scalar and we 

can easily take two contiuous curves as a bove 

joining 𝑥 and 𝑦. If 𝑉𝑆
+(𝐴𝑚) is not a singleton, then 

there exists a non zero 𝑢0 ∈ 𝑉𝑆
+(𝐴𝑚) and we work 

as in case (ii). 

In all cases we get a continuous curve 𝑧: [0,1] → 𝐺 

such that 𝑧(𝑡)∗𝐴𝑚𝑧(𝑡) ≠ 0 for every 𝑡 ∈ [0,1]. 
Since the solution 𝜆1, 𝜆2, … , 𝜆𝑚 of equation 

𝑧(𝑡)∗𝑄(𝜆)𝑧(𝑡) = 0  

are continuous functions of 𝑡. The roots of 

polynomial 𝑧(0)∗𝑄(𝜆)𝑧(0) = 𝑥∗𝑄(𝜆)𝑥 are 

connected to those 𝑧(1)∗𝑄(𝜆)𝑧(1) = 𝑦∗𝑄(𝜆)𝑦 by a 

continuous curve in 𝑉𝑆
+(𝑄(𝜆)). As a result, every 

root function 𝜆𝑖 is contained in a single component 

of 𝑉𝑆
+ (𝑄(𝜆)). Therefore the number of connected 

components in 𝑉𝑆
+(𝑄(𝜆)) does not exceed 𝑚. 

The following Corollary is the relation between 

boundedness and the number of components. 

Corollary 2.11: Let 𝑄(𝜆) be as in Eq. (1) where 

𝐴𝑚 ≠ 0 and 𝑆 be a 𝑛 × 𝑛 Hermitian matrix. Then 

𝑉𝑆
+(𝑄(𝜆)) has at most 𝑚 connected component, if 

𝑉𝑆
+(𝑄(𝜆)) is bounded. 

The next result prove that  if 𝜆0 is a boundary point 

of 𝑉𝑆
+(𝑄(𝜆))  then 0 is also a boundary point of 

𝑉𝑆
+(𝑄(𝜆)). 

Theorem 2.12: Let 𝑄(𝜆) be as in Eq. (1) where 

𝐴𝑚 ≠ 0 and 𝑆 be a 𝑛 × 𝑛 Hermitian matrix. Then 0 

is a boundary point of 𝑉𝑆
+(𝑄(𝜆0)) if  𝜆0 is a 

boundary point of 𝑉𝑆
+(𝑄(𝜆)). 

Proof: By proposition 2.1 𝑉𝑆
+(𝑄(𝜆)) is closed in ℂ 

and suppose that 𝜆0 is on the boundary 𝑉𝑆
+(𝑄(𝜆)) 

then for any 𝑆-unit vector 𝑥 ∈ ℂ𝑛 we have 

𝑥∗𝑄(𝜆)𝑥 = 0, therefore 0 ∈ 𝑉𝑆
+(𝑄(𝜆0)) and it is 

sufficent to show that zero is not in an interior point 

𝑉𝑆
+(𝑄(𝜆0)). Let {𝜆𝑝}𝑝∈ℕ be a sequence of elements 

in ℂ ∖ 𝑉𝑆
+(𝑄(𝜆)) such that 𝐵𝑟(0) ⊂ 𝑉𝑆

+(𝑄(𝜆0)), we 

can find 𝑆-unit vectors 𝑥1, 𝑥2 ∈ ℂ𝑛 where 𝑥𝑖
∗𝑆𝑥𝑖 =

1 (𝑖 = 1,2) such that 0 belongs to the interior of the 

line segment 

0 ∈ [𝑥1
∗𝑄(𝜆)𝑥1, 𝑥2

∗𝑄(𝜆)𝑥2] ⊂ 𝐵𝑟(0)  

Then the line segment close to the origin for 

sufficiently small 𝑟. By proposition 2.1 𝑉𝑆
+(𝑄(𝜆)) 

is closed, then the equalities 

lim
𝑝→∞

𝑥𝑖
∗𝑄(𝜆𝑝)𝑥𝑖 = 𝑥𝑖

∗𝑄(𝜆0)𝑥𝑖;     𝑖 = 1,2  

This implies that 0 ∈ 𝑉𝑆
+(𝑄(𝜆𝑝)), for sufficiently 

large 𝑝. Thus for suitable 𝑆-unit vector 𝑥 ∈ ℂ𝑛 we 

have 𝑥∗𝑄(𝜆𝑝)𝑥 = 0, this means which contradicts 

the assumption. 

The following Theorem is the 𝑉𝑆
+(𝑄(𝜆)) is 

singleton if zero does not belong to the 𝑉𝑆(𝐴𝑚) and 

𝑄(𝜆) = 𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚. 

Theorem 2.13: Let 𝑄(𝜆) be as in Eq. (1) where, 

𝐴𝑚 ≠ 0 and 𝑆 be a 𝑛 × 𝑛 Hermitian matrix. Then, 

1) 𝑉𝑆
+(𝑄(𝜆)) = 𝜙 if and only if 𝑆 is negative 

semidefinite: 𝑉𝑆(𝑄(𝜆)) = 𝜙 if and only if 𝑆 = 0. 

2) 𝑉𝑆(𝑄(𝜆)) = {𝛼} is bounded if and only of 

0 ∉ 𝑉𝑆(𝐴𝑚) and 𝑄(𝜆) = 𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚 where 𝐼 is 

an identity matrix. 

The first part is obvous. Proof: part (2)  Suppose 

that 0 ∉ 𝑉𝑆(𝐴𝑚) and 𝑄(𝜆) = 𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚 .Then 

𝑉𝑆(𝑄(𝜆)) = {𝜆 ∈ ℂ; 𝑥∗𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚𝑥 = 0, 𝑥 ∈
ℂ𝑛 and 𝑥∗𝑆𝑥 ≠ 0}  

Since 𝑥∗𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚𝑥 = (𝑥∗𝐴𝑚𝑥)(𝜆 − 𝛼)𝑚 = 0 

and given that 0 ∉ 𝑉𝑆(𝐴𝑚) this means that there is 

no 𝑥 ∈ ℂ𝑛 such that 𝑥∗𝐴𝑚𝑥 = 0. Hence 

𝑉𝑆(𝑄(𝜆)) = {𝛼}. Conversely, suppose that 

𝑉𝑆(𝑄(𝜆)) = {𝛼}. So, the only root of the equation 

𝑥∗𝑄(𝜆)𝑥 = 0 is 𝛼 and 𝑥∗𝑄(𝜆)𝑥 = 𝑥∗(𝐴𝑚𝜆𝑚 +
𝐴𝑚−1𝜆𝑚−1 + ⋯ + 𝐴0)𝑥 = (𝑥∗𝐴𝑚𝑥)(𝜆 − 𝛼)𝑚. If 

𝑥∗𝐴𝑚𝑥 = 0 then by theorem 2.7 𝑉𝑆(𝑄(𝜆)) is 

unbounded which is contradicts to 𝑉𝑆(𝑄(𝜆)) = {𝛼}. 

Hence 0 ∉ 𝑉𝑆(𝐴𝑚) and 𝑄(𝜆) = 𝐴𝑚(𝜆𝐼 − 𝛼𝐼)𝑚. 

Example 2.14: Let 𝑄(𝜆) = 𝐼𝜆2 + 𝐴𝜆 + 𝐵 be a 

2 × 2 quadratic matrix polynomial where 

𝐴 : = (
0 2.8𝑖

−2.8𝑖 0
) ,   𝐵 : = (

1.5 1
1 1.5

),  

and let 𝑆 be a 2 × 2 Hermitian matrix 

𝑆 : = (
4 0
0 2

)  
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Fig. 1: The left hand side is 𝑾(𝑸(𝝀)) and the right hand side is 𝑽𝑺

+(𝑸(𝝀)) 

 

Remark 2.15: In this example since 𝑄(𝜆) is 

selfadjoint, then 𝑊(𝑄(𝜆)) is symmetric about the 

real axis, moreover 𝑊(𝑄(𝜆)) has four corners 

which are the eigenvalues of 𝑊(𝑄(𝜆)). In contrast 

𝑉𝑆
+(𝑄(𝜆)) have no corners and the spectrum of 

𝑄(𝜆) lies in the interior of 𝑉𝑆
+(𝑄(𝜆)). 

3. Numerical range of polynomial operator 

matrices 
In a complex Hilbert space 𝐻 with an inner product 

⟨. , . ⟩, we consider a polynomial operator of degree 

𝑚 

𝑄(𝜆) = 𝐴𝑚𝜆𝑚 + 𝐴𝑚−1𝜆𝑚−1 + ⋯ + 𝐴0        (7)  

where 𝐴𝑗 are bounded operators for 𝑗 = 0,1, … , 𝑚 

with 𝐴𝑚 ≠ 0. A sesquilinear form (𝑥, 𝑦) → ⟨𝑥, 𝑦⟩𝑆

: = ⟨𝑆𝑥, 𝑦⟩ where, 𝑆 is self-adjoint,one may define 

𝑉𝑆(𝑄(𝜆)) as 

𝑉𝑆(𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0:  𝑥 ∈
𝐻,  ⟨𝑥, 𝑥⟩𝑆 ≠ 0}                 (8)  

and define 𝑉𝑆
+(𝑄(𝜆)) and 𝑉𝑆

−(𝑄(𝜆)) analogously.  

Some results are the same as  for the finite case, and 

we can get something similar to Theorems 2.9, 

2.12,  and 2.13. For instance, there is the following 

statement 

Proposition 3.1: Let 𝑄(𝜆) be as in Eq. (7), 𝐴𝑚 ≠ 0 

and 𝑆 be a self-adjoint operator. 

i)  𝑉𝑆(𝑄(𝜆 + 𝛼)) = 𝑉𝑆(𝑄(𝜆)) − 𝛼 for any 𝛼 ∈ ℂ. 

ii)  𝑉𝑆(𝛼𝑄(𝜆)) = 𝑉𝑆(𝑄(𝜆)) for any non-zero 

𝛼 ∈ ℂ. 

iii) If ⟨𝐴𝑖𝑥, 𝑥⟩ = 0  for all 𝑖, then 𝑉𝑆(𝑄(𝜆)) is a 

hole complex plane. 

iv) If 𝑃(𝜆) = 𝐴0𝜆𝑚 + 𝐴1𝜆𝑚−1 + ⋯ + 𝐴𝑚 then 

𝑉𝑆(𝑃(𝜆)) ∖ {0} = {𝜇−1 ∈ ℂ: 𝜇 ∈ 𝑉𝑆(𝑄(𝜆))} 

Proof: 

i)  𝑉𝑆(𝑄(𝜆 + 𝛼)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆 + 𝛼)𝑥, 𝑥⟩ =

0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

Choose 𝛽 =  𝜆 + 𝛼 then  

 𝑉𝑆(𝑄(𝜆 + 𝛼)) = {𝛽 − 𝛼 ∈ ℂ; ⟨𝑄(𝛽)𝑥, 𝑥⟩ =

0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

 = {𝛽 ∈ ℂ; ⟨𝑄(𝛽)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈
𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1} − 𝛼  

= 𝑉𝑆(𝑄(𝛽)) − 𝛼  

Replacing 𝛽 by  𝜆 we get the result. 

ii)  𝑉𝑆(𝛼𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝛼𝑄(𝜆)𝑥, 𝑥⟩ =

0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1} 

= {𝜆 ∈ ℂ; 𝛼⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈
𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

Since 𝛼 ≠ 0 hence 𝑥∗𝑄(𝜆)𝑥 = 0  

 𝑉𝑆(𝛼𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈

𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

=  𝑉𝑆(𝑄(𝜆))  

iii)  𝑉𝑆(𝑄(𝜆)) = {𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ =

0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1} 

= {𝜆 ∈ ℂ; ⟨(𝐴𝑚𝜆𝑚 + 𝐴𝑚−1𝜆𝑚−1 + ⋯ + 𝐴0 )𝑥, 𝑥⟩
= 0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1} 

= {𝜆 ∈ ℂ; ⟨𝐴𝑚𝑥, 𝑥⟩𝜆𝑚 + ⟨𝐴𝑚−1𝑥, 𝑥⟩𝜆𝑚−1 + ⋯ +
⟨𝐴0 𝑥, 𝑥⟩ = 0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

Since  ⟨𝐴𝑖𝑥, 𝑥⟩ = 0 then  

 𝑉𝑆(𝑄(𝜆)) = {𝜆 ∈ ℂ, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ =

1} = ℂ.  

iv) 𝑉𝑆(𝑃(𝜆)) ∖ {0} = {𝜆 ∈ ℂ; ⟨𝑃(𝜆)𝑥, 𝑥⟩ =

0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1} 

= {𝜆 ∈ ℂ; ⟨(𝐴𝑜𝜆𝑚 + 𝐴1𝜆𝑚−1 + ⋯ + 𝐴𝑚 )𝑥, 𝑥⟩ =
0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

Since 0 ∉ 𝑉𝑆(𝑃(𝜆)) we can choose 𝜇 = 1/𝜆 then  

𝑉𝑆(𝑃(𝜆)) ∖ {0} = {1/𝜇 ∈ ℂ; ⟨(𝐴𝑜(1/𝜇 )𝑚 +

𝐴1(1/𝜇)𝑚−1 + ⋯ + 𝐴𝑚 )𝑥, 𝑥⟩ = 0, for some 𝑥 ∈
𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

= {𝜇−1 ∈ ℂ; ⟨𝜇𝑚(𝐴𝑜 + 𝐴1𝜇 + ⋯ + 𝐴𝑚𝜇𝑚)𝑥, 𝑥⟩ =
0, for some 𝑥 ∈ 𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

= {𝜇−1 ∈ ℂ; 𝜇𝑚⟨𝑄(𝜇)𝑥, 𝑥⟩ = 0, for some 𝑥 ∈
𝐻, ⟨𝑆𝑥, 𝑥⟩ = 1}  

= {𝜇−1 ∈ ℂ: 𝜇 ∈ 𝑉𝑆(𝑄(𝜆))}  

Remark 3.2: The same properties are holding when 

𝑉𝑆(𝑄(𝜆)) is replaced by 𝑉𝑆
±(𝑄(𝜆)). Furthermore, 

for these sets we have additional properties. 

1) If 𝑆 is positive operator then 𝑉𝑆(𝑄(𝜆)) =
𝑉𝑆

+(𝑄(𝜆)). 

2) If 𝑆 is negative operator then 𝑉𝑆(𝑄(𝜆)) =
𝑉𝑆

−(𝑄(𝜆)). 

Be careful when studying infinite dimensional 

operators by applying finite dimensional 

techniques. For example, in the case of infinite 

dimensions, even if 𝑆 is a positive operator, the 

condition like (iv) in Proposition 2.1 or Theorem 

2.5 may not be obtained because 𝑆−1 may not exist. 

It’s clear that 𝑉-numerical range of matrix 

polynomial is bounded as we shown in Theorem 

2.7, but in infinite dimensional 𝑉𝑆(𝑄(𝜆)) is not 
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closed. The following Theorem proved that 

𝑉𝑆(𝑄(𝜆)) is bounded if 0 ∉ 𝑉𝑆(𝑄(𝜆))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Theorem 3.3:Let 𝑄(𝜆) be as in Eq. (7) and let 𝑆 be 

a self-adjoint operator. Then 𝑉𝑆
+(𝑄(𝜆)) is bounded 

if and only of 0 ∉ 𝑉𝑆
+(𝐴𝑚). 

Proof: Suppose that 𝐺 = {𝑥 ∈ 𝐻:  ⟨𝑆𝑥, 𝑥⟩ = 1}. Let 

0 ∉ 𝑉𝑆
+(𝐴𝑚) then 0 ∉ 𝑉𝑆

+(𝐴𝑚) and 𝜇 =
𝑚𝑖𝑛{|𝑧|: 𝑧 ∈ 𝑊𝑆

+(𝐴𝑚)}, then there exists a  positive 

real number 𝑀 such that 

|⟨𝐴𝑚𝑥, 𝑥⟩𝜆𝑚| ≥ |𝜇𝜆𝑚| > ∑ |𝑚−1
𝑘=0 ⟨𝐴𝑘𝑥, 𝑥⟩|𝜆𝑚  

for 𝑥 ∈ 𝐺 and 𝜆 ∈ ℂ with |𝜆| > 𝑀. It clearly 

follows that 𝑉𝑆
+(𝑄(𝜆)) ⊆ {𝑧 ∈ ℂ: |𝑧| ≤

𝑀}.Conversely, consider 𝑉𝑆
+(𝑄(𝜆)) is bounded and 

0 ∈ 𝑉𝑆
+(𝐴𝑚), Let 𝑥 ∈ 𝐺 and ⟨𝐴𝑚𝑥, 𝑥⟩ = 0. Since 

𝑉𝑆
+(𝑄(𝜆)) is bounded, then there must be at least 

one coefficient 𝐴𝑟(𝑟 ≠ 𝑚) such that ⟨𝐴𝑟𝑥, 𝑥⟩ ≠ 0. 

A sequence of unitary operator {𝑈𝑘}𝑘∈ℕ converging 

to the identity operator 𝐼, such that ⟨𝑈𝑘
∗𝐴𝑟𝑥, 𝑈𝑘𝑥⟩ ≠

0 and 𝑈𝑘
∗𝑆𝑈𝑘 = 𝑆 for 𝑘 ∈ ℕ. Then 𝑥𝑘 = 𝑈𝑘𝑥 → 𝑥 

and ⟨𝑆𝑥𝑘 , 𝑥𝑘⟩ = 1 for 𝑘 ∈ ℕ. For a fixed 𝜖 > 0 and 

for all sufficiently large 𝑘 it is obvious that 

⟨𝐴𝑟𝑥𝑘 , 𝑥𝑘⟩ > 𝜖. Since 𝑊𝑆
+(𝑄(𝜆)) is bounded, the 

function 
⟨𝐴𝑟𝑥𝑘,𝑥𝑘⟩

⟨𝐴𝑚𝑥𝑘,𝑥𝑘⟩
 of the polynomial ⟨𝑄(𝜆)𝑥𝑘 , 𝑥𝑘⟩ is 

also bounded for all 𝑘 ∈ ℕ, which is contradiction. 

4. Conclusions 

This paper illustrate the location of  𝑉𝑆(𝑄(𝜆))  the 

complex plane and  a theorem concerning  the 

boundary of 𝑉𝑆(𝑄(𝜆)) is also obtained. On the other 

hand describe possible generalazations of those 

results including their extensions to bounded linerar 

operators on an infinite dimensional Hilbert space . 
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 المؤثرة تعميم المدى العددي لمصفوفات متعددة الحدود
 داروان زرار محمد و احمد محمد صابر

 قسم الرياضيات ، كلية العلوم ، جامعة صلاح الدين ، اربيل ، العراق
 

 الملخص
𝑄(𝜆)نفرررررررر  ان  = 𝜆𝑚  𝐴𝑚 + 𝜆𝑚−1 𝐴𝑚−1 + ⋯ + 𝐴0  هرررررررو مصرررررررفوةة مرررررررحير  م عررررررردد  ال ررررررردود و  يررررررر  ان𝐴𝑖 ∈ 𝑀𝑛(ℂ)  لكرررررررل

𝑖 =  0,1, . . . . , 𝑚  هي𝑛 ×  𝑛  ل كن  ةيمصفوةة عقد𝜆  م غير عقدي ل𝑛 ×  𝑛  مصفوةة هيرميشن𝑆  نعرر .V  مرد  العرددي لمصرفوةة
 ميل  𝑄(𝜆)م عدد  ال دود ل 

𝑉𝑆(𝑄(𝜆)) = { 𝜆 ∈ ℂ; ⟨𝑄(𝜆)𝑥, 𝑥⟩ = 0,   for some  𝑥 ∈ ℂ𝑛 , ⟨𝑥, 𝑥⟩𝑆 ≠ 0 } 
,𝑥⟩ يرر   𝑦⟩𝑆 = 𝑥∗𝑆𝑦 ةرري هررحث ت رر   ررم دراسررة .𝑉𝑆(𝑄(𝜆))  و ركزنررا علررخ ال ررواد ال ندسررية ل𝑉𝑆(𝑄(𝜆))   ن ررن نذ ررح ااع تررار موقرر

𝑉𝑆(𝑄(𝜆))   ةي المس و  العقدي و  م ايضا ال صول علخ مبرهنة   علق  دود𝑉𝑆(𝑄(𝜆)) م وصف ال عميم لن ائجنا تمرا ةري حالرو  وسرعات  .
 المحيرات ال دودية ال طية ةي الأتعاد اان ائية لفضاء هلبرت.

 


