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Suppose that Q(1) = ™A, + A" 1A, + -+ A4, is a
polynomial matrix operator where A; € M,,(C) for i=
0,1,...,m, are n x n complex matrix and let 1 be a complex
variable. For an n X n Hermitian matrix S, we define the V-
numerical range of polynomial matrix of Q (1) asVs(Q(4)) =
{1€C (Q)x,x) =0, for some x € C*, (x,x)s # 0} ,
where (x,y)s = y*Sx. In this paper we study Vs(Q(2)) and
our emphasis is on the geometrical properties of Vs(Q(1)).
We consider the location of VS(Q(A)) in the complex plane
and a theorem concerning the boundary of VS(Q (/1)) is also
obtained. Possible generalazations of our results including
their extensions to bounded linerar operators on an infinite
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1. Introduction

Let A € M, (C). The numerical range (the field of
value) of A defined and denoted by W(A) =
{x*Ax:x € C", x*x = 1}

where x* is the conjugate transpose of x. Many
researchers have dedicated their work to the study
of numerical ranges not only in Hilbert spaces but
also in Banach spaces and Banach Algebras,
because it is very useful tool in studying and
understanding the spectral analysis of unbounded
and bounded linear operators in Hilbert spaces as
explained in most functional analysis and matrix
analysis textbooks [15],[16] and [17].

We can see that the numerical range is the image of
the Euclidean unit ball in C™, which is a compact
and connected set, under the continuous mapping
x = x*Ax. Therefore, W(A) is a compact and
connected set. W(A) is also a convex set. For
infinite dimensional Hilbert space we have the
following: Let H be a complex Hilbert space with
inner product (.,.) and let B(H) be the algebra of
all bounded linear operators on H. For A € B(H),
the numerical range of A is the set

wW(4) = {u € C: (Au,u), for some u € H, ||u|| =

1}.
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dimensional Hilbert space are described.

In this context, W(A) is convex, bounded but not
necessarily closed. For properties on numerical
range on infinite dimensional Hilbert spaces we
refer to [18] and [19].

The concept of numerical range (the field of value)
has been generalized in several directions, some of
the generalizations that relevant to this study. The
notation of the numerical range of matrix
polynomials was first introduce by P. H. Muller in
1954 [11]. It has been systematically studied over
the last decade. Moreover several of interesting
results have been obtained (see e.g., [12], [13] and
[14]).

Suppose that M, (C) is the algebra of all nxn
complex matrices, and consider the polynomial
matrix

Q) =AM+ A A"+ + 4, (D)

with 4; € M,(C) for i=0,1,...,m, and A is a
complex variable. Define the numerical range of
Q) as

W) =

{2 € G;(Q(M)x, x) = 0, for some nonzero x €

C", (x,x) = 1}, 2

the concept coincides to the well-known (classical)
numerical range when Q(A) = Al — A, defined by
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W(A) = {x*Ax, forsome x € C",x*x =1}. (3)
In the study of matrices and operators, the
numerical range is a useful instrument that has been
well researched [1] and [2].

Similar to the classical numerical range of A, the
numerical range of a matrix polynomial is always
closed and contains its spectrum o(Q) ={1 €C:
det Q(1) =0}.(e.0., see [3], [10] and its
references)

Replacing in (2) the Euclidean inner product with
the indefinite inner product on C™, it is known [3]
that there exists an invertible Hermitian matrix S
such that (x,y)s = (Sx,y). Hence, we introduced
V- numerical range of matrix polynomial of Q(4) as
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This article is a first study of V-numerical range of
matrix polynomials of an indefinite inner product
space. In section 2 we discuss some fundamental
properties of Vs (QA)) based on the results of [1]
and [7], and we consider the location of V-
numerical range of matrix polynomials in the
complex plane and when it is bounded. On the other
hand, we prove that the number of connected
components of the V-numerical range of Q(1) in (1)
does not excced m, and we study the boundary of
Vs(Q(A)). Furthermore, in section 3 we extend the
definition of Vg(Q(4)) to V-numerical range
polynomial operator of infinite dimensional Hilbert
space.

Vs(Q(D) = {1 € C;(Q(D)x,x) = 0, for some x € C", {x,2) Mai},Results

which coincides with the positive V-numerical
range of Q(1):

Vs (Q() = {1 € C(QM)x, x) = 0, for some x €
" (x,x)s =1}  (5)

Since S is positive definite, S =X*X for some
nonsingular X and it is simple to prove that

Vs(Q(D) = V5"(Q(D) = W(X_Q(l)X‘_ll)- In
pairticular, V(M) =W(S2Q)Sz), where

1
Sz denotes the inverse of Sz and S'/2 denotes the
(unique) positive definite matrix that satisfies
(51/2)2 =S.
Many properties of W(Q(4)), can be extended to
Vs(Q(A)) and V5 (Q(A)) if S is positive definite.
Moreover, the concept coincides to the well-known

V-numerical range when Q (1) = Al — A, defined by
(Ax

Vs(A) = {?}f}):,for some x € C", (x, x)g # 0}.
Currently under investigation is the numerical range
of an operator defined on an infinite inner product
space (see [1] and references therein). The
fundamental characteristics of the classical
numerical range are compactness and convexity.
But V5(A) may be neither closed nor bounded in
contrast to the classical situation. However, Vs(A)
is the union of two convex sets, where Vs(A) =
Vst (A) U Vg (A), even if it could not be convex.
where

Vst (A) = {{Ax, x),for some x € C™, {x, x)s = 1}
and

Vs (A) = {{Ax, x),for some x € C*, (x, x)s = —1}
Bayasgalan [4] proved that if A is positive definite,
its closure contains the spectrum of A. It is difficult
to produce an accurate computer plot of this set
because the numerical ranges of the matrix
polynomials in an indefinite inner product space
like V5 (A) are neither bounded nor closed. The
description of V5(Q(4)) for A; € M,,(C) and n > 2
is mor complicated, so it would be useful to have a
code that generates graphical representations. On
the other hand, Vg(Q(A)) may not be convex.
During the recent decades, the S-numerical range
and the numerical range of a matrix polynomial has
been extensively studied by many researchers (see,
[51, [6], [7], [8], [9]and the references therein).
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In the following proposition, we describe some
fundamental properties of V5(Q (1)) that are easily
verifiable.

Proposition 2.1: Let Q(4) be as in Eq. (1), 4,, # 0
and S isa Hermitian matrix then

i) Vs(Q(A+ a)) =Vs(Q(1) —aforany a € C.
i) Vs(aQ(A)) = Vs(Q(A)) for any non-zero a € C.
iii) If x*A;x = 0 for all i then V5(Q(2)) is a hole
complex plane.

iv) For any unitary matrix U, Vs(U*QW)U) =
Vs(Q(A)) ifand only if U*SU = S.

V) If P = A A™ + A A+ -+ 4, then
Vs(P)\ {0} = {u™ € C:u e Vs(Q(D)}
The fundamental properties of the classical

numerical range are compactness and convexity.
Condition (iii) in Remark 2.2 demonstrates that
Vs(Q(A)) is closed if S is positive definite.

Remark 2.2: The same properties are holding when
Vs(Q(A)) is replaced by Vi (Q(A)). Furthermore,
for these sets we have additional properties.

i) IfS is positive definite then Vg (Q (1)) is empty.
ii) If S is negative definite then V¢F(Q(A)) is
empty.

i) V5" (Q (1)) and V5 (Q(A)) are closed sets.

The following example shows that, Vit (Q(A)) need
not be connected or bounded.

Example 2.3: Let Q(1) =A™ (_01 g) - ((1) g)
1 0

and § = (0 2). Then

VH(QQ) ={A€C:A™qg—1=0 for some q €
[-1,1]}

={re®®:r >1and @ = kn/mk =0,1,....2m —
13

There are (2m) unbounded connected components.
The following example shows that the convexity
V¢t (Q(Q)) is not necessary.

Example 2.4: Let Q(A) =A™ ((1) g) - (_01 (2))
1 0

and S = (0 2). Then
VH(QA) = {A € C:A™ — q = 0 for some q €
(=11}

={re®:0<r<1and@ =kn/mk=
0,1,...2m— 1}
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has a single non-convex component.

Theorem 2.5: If S is a positive definite, then
V(@) € W(Q().

Proof: Let 1 € V¢t (Q(4)). Then there exsits S-unit
vector x € C* such that (Q(A)x,x)=0 and
{Sx,x) = 1. Since S is a positive definite then the

1 1 1
positve definite matrix Sz exist and S25z = S.
1
Choose y = Szx then it is clear (y,y) = 1.
-1 -1
0=(Qx,x) =(QDS2x,5zx) =

(s7) ews7 x)
then by properties of W(Q (1)) in A € W(Q(A)).
Lemma 2.6: Suppose that A € M,,(C) and S is a
n X n Hermitian matrix. Then Vgt (4,,) is either
has interior point or singleton.
Proof: Suppose that Vgt (4,,) is neither has interior
point nor singleton, then by convexity of Vit (4,,)
and Schur theorem we can assume that V¢t (4,,) =
[¢(,n] € R and without loss of generality we
consider the (2 x 2) case

a b
A= (o d)’
where (a,b,d) is not of the form (k,0,k) (k €
C),and

5= 9)

where a and 8 are non-zero real numbers. Then for
any S-unit vectors x = (;) with a(xx) + B(xy) +
Bx)=1 we have x"Ax = a(xx)+ b(xy) +
diyy) =(a- —)IXI2 +d|y|> — b(yx) +§
Clearly we can flnd S-unit vector x such that
x*Ax € C\ R. Thus, V(A) cannot be a closed
interval in R.

The following Theorem shows that Vs (Q(1)) is
bounded if and only if zero does not belongs to
VS+(Am)-

Theorem 2.7: Let Q(4) be as in Eq. (1) and let S be
a mxn Hermitian matrix. Then V& (Q(A)) is
bounded if and only if 0 & Vit (4,,).

Proof: Consider V¢ (Q(A)) is bounded and
Vs (Q(A) = {4 € C;x*Q(A)x = 0,for some x €
C", x*Sx = 1}, hence all roots of polynomial
x*Q(A)x = 0 is bounded. Furthermore, the function

*Apx
X2 is a member of every roots where 0 < k <

x*Amx

m. So there exist 7 € R such that | = al Akx

|<r a

simple calculation we get that |x*Amx| > q for
g €R, by lemma 2.6 0 ¢ Vi (A,,). Conversely,
suppose that V¢ (Q(A)) is unbounded then there
exists u € VH(Q(1)) such that |u] > r, for r e R.

Moreover, the functlon is member of every

mX

roots where 0 <1 <m ThIS |mpI|es that there

exists 0 < j < m such that the functlon |s the
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simple calculation we get |x*4,,x| < q for q € R,
by lemma 2.6 0 € ViF(4,,.).

The following result can be proved in a similar
fashion as Theorem 2.7.

Corollary 2.8: Let QA1) =IA"+ A, A" 1+
-+ A, be a monic polynomial and let Sben x n a
Hermitian matrix then V5" (Q(4)) is bounded.

For monic polynomial Q(4), the positive V-
numerical range of Q(A) is always bounded.
Furthermore we define the inner V-numerical radius
7s(Ap) = mingg, vy—1|x"Apx| and the outer V-
numerical radius 7;(4;) = max gy xy=1|x"4;x| then
Vst (Q(A)) is located in circular annulus.

Theorem 2.9: Suppose that Q (1) be a monic matrix
polynomial and let A € Vi (Q(A)) then
n<|A<1+nmn

where

= BUo) o
"= oyt 2 = M () k=
0,1,..,m — 1}, %(4,) is inner V-numerical radius

and 7;(4;) is outer V-numerical radius.

Proof: Let x be any S-unit vector of C", the roots of
polynomial

xQ)x = A" + x* Ay xA L+ +

x*Agx  (6)

lie in the disc By(1+Ry), where Ry =
max{r;(Ax):k = 0,1, ..., m — 1} < max,7;(4y),
then obviously

V' (Q(A) € Bo(1 +13)

Furthermore, every roots of equation (6) lie on or
outside the circle

|4 = min ————m——
k=1,2,..,m | X" Aox|+|x"SAkx|

and consequently we take

|/1| > min|x*Agx|

[x*Apx|

max|x*A0x|+r}?%|x*Akx|

_ 7s(Ao) —r

7s(do)+maxrs(Ar)
The next theorem shows that the number of
connected component of the positive V-numerical
range of Q (1) does not exceed m.
Theorem 2.10: Let Q(4) be as in Eq. (1), where
A, #0 and S be a nxn Hermitian matrix.
Suppose Vit (Q(A)) has r connected component.
1) Let s be the minimum number of distinct roots
of the polynomial x*Q(1)x with x*Sx =1 such
that x*A,,x # 0 and consider V¢t (4,,)\ {0} is
connected. Then
rs<ssm
2) If s; is the minimum number of distinct roots of
the polynomial x*Q(1)x with x*Sx =1, and
consider V¢ (4,,,) \ {0} has disjoint connected
component G; and G; such that x*A,,x € G; for
i=1,2.Then
r<s;+s,<2m
Proof: Consider G ={x € C", x"Sx =1}. Let
u,v € V&F(4,,) then there exist S-unit vectors
x,y € G such that x*A,,x =u and y*4,,y =v.
Since V¢t (4,,) is convex set, so the line segment
[u, v] lies in Vst (Ap).
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i) If 0¢[uv] then there exists a continuous
curve z:[0,1] = G such that z(0) = x, z(1) = uy
with |u] =1 and z(t)*A,z(t) € [u,v] for every
t€[0,1]

ii) If 0 € [u,v] then we can choose r € Vit (4,,)
such that 0 ¢ [u,r]U[r,v]. Again by using
convexity of Vit(4,,) there exists a continuous
curve z:[0,1] = G such that z(0) = x, z(1) = uy
with |u| = 1 and z(%) =r, where r = q*A,,q and
q €G. So, z(t) Apz(t) € [u,r] U [r,v] for every
t €[0,1].

iii) Finally, suppose u=wv. If V{(4,,) is a
singleton, then A,, = aS where « is a scalar and we
can easily take two contiuous curves as a bhove
joining x and y. If V¢t (4,,) is not a singleton, then
there exists a non zero u, € Vit (4,,) and we work
as in case (ii).

In all cases we get a continuous curve z:[0,1] = G
such that z(t)*A,,z(t) # 0 for every t €[0,1].
Since the solution 44, 4,, ..., 4,, of equation
z(1)"Q()z(t) =0

are continuous functions of t. The roots of
polynomial z(0)"Q(M)z(0) = x"Q(L)x are
connected to those z(1)*Q(4)z(1) = y*Q(A)y by a
continuous curve in V& (Q(1)). As a result, every
root function 2; is contained in a single component
of Vst (Q(2)). Therefore the number of connected

components in V5" (Q (1)) does not exceed m.

The following Corollary is the relation between
boundedness and the number of components.
Corollary 2.11: Let Q(4) be as in Eq. (1) where
A, # 0 and S be a n X n Hermitian matrix. Then
Vst (Q(A)) has at most m connected component, if
Vst (Q(A)) is bounded.

The next result prove that if 4, is a boundary point
of V5" (Q(1)) then 0 is also a boundary point of
V' (Q(A)).

Theorem 2.12: Let Q(A) be as in Eqg. (1) where
A, # 0 and S be a n X n Hermitian matrix. Then 0
is a boundary point of Vit(Q(1y)) if 4, is a
boundary point of V¢t (Q(1)).

Proof: By proposition 2.1 V¢F(Q(A)) is closed in C
and suppose that A, is on the boundary Vit (Q(A))
then for any S-unit vector x € C* we have
x*Q(AM)x = 0, therefore 0 € V5" (Q(A,)) and it is
sufficent to show that zero is not in an interior point

/8
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Vst (Q(Ao))- Let {A,}pen be a sequence of elements
in C\ V5'(Q(A)) such that B,.(0) c V& (Q(4y)), we
can find S-unit vectors x;,x, € C* where x;Sx; =
1 (i = 1,2) such that 0 belongs to the interior of the
line segment
0 € [x;Q(D)x1, x;Q(Dx;] < B-(0)
Then the line segment close to the origin for
sufficiently small r. By proposition 2.1 V" (Q(1))
is closed, then the equalities
lim xf Q2 = x{QUo)xs i =12
This implies that 0 € V' (Q(4,)), for sufficiently
large p. Thus for suitable S-unit vector x € C* we
have x*Q(4,)x = 0, this means which contradicts
the assumption.
The following Theorem is the V¢H(Q(A)) s
singleton if zero does not belong to the V5(4,,) and
Q) = A (AL — aD)™.
Theorem 2.13: Let Q(4) be as in Eq. (1) where,
A,, # 0and S be an x n Hermitian matrix. Then,
1) Vi'(Q(Y)) = ¢ if and only if S is negative
semidefinite: V5(Q(1)) = ¢ ifand only if S = 0.
2) Vs(Q(A)) ={a} is bounded if and only of
0¢Vs(Ap) and Q(A) = Ay (Al — al)™ where [ is
an identity matrix.
The first part is obvous. Proof: part (2) Suppose
that 0 & Vs(A4,,) and Q(A) = A,,(AI — al)™ .Then
V(@) ={1eCx"A,,(Al —a)™x =0,x €
C™ and x*Sx # 0}
Since x*A,, (Al —al)™x = (X" Apx) (A —a)™ =0
and given that 0 & Vs(A4,,) this means that there is
no xeC"™ such that x"A,,x=0. Hence
Vs(Q(A)) ={a}. Conversely, suppose that
Vs(Q (1)) = {a}. So, the only root of the equation
x*Q(Mx =0 is a and x"Q(D)x = x* (A, ,A™ +
Ap A1+ + ADx = (P A)A— )™ If
x*Apx =0 then by theorem 2.7 Vg(Q(A)) is
unbounded which is contradicts to Vs(Q (1)) = {a}.
Hence 0 & Vs(A,,) and Q(A) = 4,,,(Al — al)™.
Example 2.14: Let Q(A) =122+ AA+B be a
2 % 2 quadratic matrix polynomial where

0 2.8i 1.5 1
A'_(—2.8i 0 ) B'_( 1 1.5)’
and let S be a 2 x 2 Hermitian matrix

4 0

S:= (O 2)
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L . | L . L
0.5 0 0.5 1 1.5 2
Real Axis

-1.5 -1 25

-0.5 0 0.5 1 1.5
real axis

-2 -1.5 -1 2

Fig. 1: The left hand side is W(Q(4)) and the right hand side is V(Q(2))

Remark 2.15: In this example since Q(A) is
selfadjoint, then W(Q (1)) is symmetric about the
real axis, moreover W(Q(4)) has four corners
which are the eigenvalues of W(Q(4)). In contrast
Vs (Q(4)) have no corners and the spectrum of
Q(A) lies in the interior of Vst (Q(1)).

3. Numerical range of polynomial operator
matrices

In a complex Hilbert space H with an inner product
{.,.), we consider a polynomial operator of degree
m

Q) =A™+ Ay A™ 1+ -+ 4y (7)
where A; are bounded operators for j =0,1,...,m
with 4,, # 0. A sesquilinear form (x,y) = (x,¥)s
:=(Sx,y) where, S is self-adjoint,one may define
Vs(Q(A)) as

Vs(Q@(D) ={1€CG{QWx,x)=0: x €

H, (x,x)s # 0} (8)

and define V¢t (Q(A)) and V¢ (Q (1)) analogously.
Some results are the same as for the finite case, and
we can get something similar to Theorems 2.9,
2.12, and 2.13. For instance, there is the following
statement

Proposition 3.1: Let Q(A1) be as in Eq. (7), A, # 0
and S be a self-adjoint operator.

i) Vs(Q(A + a)) = Vs(Q(A)) — a forany a € C.
i)  Vs(aQ(d) =Vs(Q(A)) for any non-zero
a €C.

iii) If(4;x,x) =0 for all i, then V5(Q(2)) is a

hole complex plane.

iv) If PQA) =A™+ A1+ + A,
Vs(P()) \ {0} = {u" € C:pu € V5(Q(D))}
Proof:

) e+ a)={1eCGQMA+a)xx) =
0, for some x € H,{Sx, x) = 1}

Choose § = A+ «a then

Vs(QA+ ) = (B —a € CG(QBIx,x) =

0, for some x € H,(Sx,x) = 1}

={B € C;(Q(B)x,x) = 0, for some x €
H,(Sx,x)=1} - «a

=Vs(Q(B)) —

Replacing B by A we get the result.

i) Vs(aQW) = {1 € C(aQM)x,x) =

0, for some x € H,(Sx,x) = 1}

then

79

={1 € C;a(QA)x,x) = 0, for some x €
H,(Sx,x) =1}
Since @ # 0 hence x*Q(AM)x =0
VS(aQ(A)) ={1€ G (Q()x, x) =0, for some x €
H,{Sx,x) =1}
= VS(Q(/D)
i) Vs(Q) = {2 € Q% x) =
0, for some x € H,(Sx,x) = 1}
={AE€C{(ApA™ + A AM1 + -+ Ag )x, X)
= 0, for some x € H,(Sx,x) = 1}
= {1 € C; (Apx, X)A™ + (A1, x)A™ L+ oo 4
(Ag x,x) = 0, for some x € H,(Sx, x) = 1}
Since (A4;x,x) = 0 then
VS(Q(A)) = {1 € C, for some x € H,(Sx,x) =
1} = C.
iv) Vs(P(M)\ {0} = {2 € G(P()x,x) =
0, for some x € H,(Sx,x) = 1}
={AEC{(AA™ + A A™ T+ o+ A, )x, x) =
0, for some x € H,(Sx,x) = 1}
Since 0 ¢ V(P (4)) we can choose p = 1/ then
Vs(P()) \ {0} = {1/p € C;{(A,(1/u)™ +
A (/W)™ + -+ Ay )x, x) = 0, for some x €
H,{Sx,x) = 1}
={ut eG4, + A+ A ™)X, x) =
0, for some x € H,(Sx,x) = 1}
={ut e Cu™Q(ux, x) =0, for some x €
H,{Sx,x) =1}
={u e CpeVs(QN)}
Remark 3.2: The same properties are holding when
Vs(Q(A)) is replaced by Vi (Q(A)). Furthermore,
for these sets we have additional properties.
1) If S is positive operator then Vs(Q(1)) =

Vs Q).
2) If S is negative operator then Vs(Q(1)) =
Vs (@().
Be careful when studying infinite dimensional
operators by applying finite  dimensional

techniques. For example, in the case of infinite
dimensions, even if S is a positive operator, the
condition like (iv) in Proposition 2.1 or Theorem
2.5 may not be obtained because S~ may not exist.
It’s clear that V-numerical range of matrix
polynomial is bounded as we shown in Theorem
2.7, but in infinite dimensional Vs(Q(4)) is not
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closed. The following Theorem proved that

Vs(Q(A)) is bounded if 0 & Vs(Q(A)).

Theorem 3.3:Let Q(A) be as in Eq. (7) and let S be
a self-adjoint operator. Then V¢t (Q(A)) is bounded
if and only of 0 ¢ V¢t (4,,).

Proof: Suppose that G = {x € H: (Sx,x) = 1}. Let
0¢VS(A,) then 0¢Vd(4,) and p=
min{|z|: z € Wi (A,,)}, then there exists a positive
real number M such that

[(Amx, X)A™| 2 |[uA™| > TR5 | (Ax, x)|A™

for x€eG and A€ C with |A]| > M. It clearly
follows that VHQW) S {zeC:|z| <
M3}.Conversely, consider V¢t (Q(4)) is bounded and
0 €V (An), Let x € G and (A,,x,x) = 0. Since
Vst (Q(A)) is bounded, then there must be at least
one coefficient A,(r # m) such that (4,x,x) # 0.
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ddghiad el Gae V Byai .S (e Ashacn X N J gde e 4 oS3 Adie digpaen X N al= 0,1,....,m
Jie Q(A) J 252al) Baratia

Vs(@QD) ={21€C; (Q)x,x) =0, forsome x € C", (x,x)s # 0}
ise sbe¥) 213k 5 Vs (Q(A)) J dmmrigll palsall e LS, 5 Vg(Q(A)) At o5 Sim ol 3 (X, ) = X"Sy
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