Tikrit Journal of Pure Science Vol. 28 (1) 2023

IAS] - - -
@ Tikrit Journal of Pure Science
v/ ISSN: 1813 — 1662 (Print) --- E-ISSN: 2415 — 1726 (Online)

= \ e

Sl el &3 Journal Homepage: http://tjps.tu.edu.ig/index.php/j

PERFORMANCE REFINEMENT OF CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURES FOR SOLVING BIG DATA

PROBLEMS

Saud Aljaloud
College of Computer Science and Engineering, University of Ha'il, Ha'il, Saudi Arabia

https://doi.orq/10.25130/tjps.v28i1.1270

ARTICLE INFO. ABSTRACT
Article history: T
-Received: 18/11/2022 he use of more examples than contrasted ones to compare
-Received in revised form: 10/12/2022 neural network frameworks through using the MNIST
-Accepted: 9/172023 database is considered a good research method. This is
-Final Proofreading: 71212023 because this database is the subject of active research at the
-Available online: 20/ 2/2023 moment and has produced excellent results. However, in

Keywords: MNIST database, CIFAR10, GPU | order to be trained and deliver accurate results, neural
Bigdata, Deep learning, CNN, Theano and | networks need a sizeable amount of sample data, as will be

TensorFlow, MNIST database covered in more detail later. Because of this, big data experts
Corresponding Author: frequently encounter problems of this nature. Therefore, two
Name: Saud Aljaloud of the most well-liked neural network frameworks, Theano

and TensorFlow, were compared in this study for how well
they performed on a given problem. The MNIST database
was used for this specific problem, represented by the
recognition of handwritten digits from one to nine. As the
project description implied, this study would not present a
standard comparison because of this; instead, it would present
a comparison of these networks' performance in a Big Data
environment using distributed computing. The FMNIST or
Fashion MNIST database and CIFAR10 were also tested
(using the same neural network design), extending the scope
of the comparison beyond MNIST. The same code was used
with the same structure thanks to the use of a higher-level
library called Keras, making use of the aforementioned
support (in our case, Theano or TensorFlow). There has been
a surge in open-source parallel GPU implementation research
and development as a result of the high computational cost of
training CNNs on large data sets. However, there are not
many studies on assessing the performance traits of those
implementations. In this study, these implementations were
compared carefully across a wide range of parameter
configurations, in addition to investigating potential
performance bottlenecks, and identifying a number of areas
that could use more fine-tuning.

E-mail: s.aljaloud@uoh.edu.sa

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT
UNIVERSITY. THIS IS AN OPEN ACCESS
ARTICLE UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

. Introduction

A large amount of data is collected by states, related technologies becoming more prevalent in all
institutions, or individuals in order to draw aspects of life, the data produced by these
meaningful conclusions from it and use it as needed. technologies is also becoming more prevalent. The
Data created by materials such as numbers, texts, increasing prevalence of information technologies has

expressions, figures, and graphics has been changed people's living, working, and environmental
transferred to electronic media using computers in conditions; places, professions, and employees have
every field [5]. With computers, the internet, and become "mobile," as have the devices they use.

89

http://tjps.tu.edu.iq/index.php/j
https://doi.org/10.25130/tjps.v28i1.1270
http://creativecommons.org/licenses/by/4.0/

Tikrit Journal of Pure Science Vol. 28 (1) 2023

However, in terms of diversity and volume, the
resulting data has reached very different and large
dimensions. The increase in mobility, the widespread
use of social networks, the development of various
tracking systems (sensors, barcodes, data matrix,
RFID systems, etc.) technologies, the increase in the
accessibility of communication technologies, the
transfer of many business lines, particularly
commercial transactions, to the electronic
environment, and the diversity of data produced, as
well as the speed and amount of collection, have all
resulted in significant increases in the speed and
amount of collection. This trend is expected to
continue. While Machine-to-Machine
Communication (M2M) is a technology that enables
devices to be remotely monitored, managed, and
communicated with each other via the sim card,
sensors, electronic circuits, and internet network
installed in the devices. It has a wide range of
applications in the lives of both individuals and
businesses. The use of these technologies in many
fields, including vehicle tracking, medical
automation, smart home appliances, metre reading,
logistics, security, and agriculture, has necessitated
the analysis of the data transmitted by the devices.
The increasing prevalence of wireless sensors and the
infinite number of objects that can be addressed with
Internet Protocol Version 6 (IPv6) have led to an
increase in the number of devices that will be
connected to the Internet. According to the
predictions of Cisco and IBM, 50 billion devices
would be included in the internet network in 2020 [5].
Parallel to this development, M2M systems [6-10], in
which a hardware is connected with a single
application and today almost any hardware can be
easily interconnected with various applications or
devices, Internet of Things (loT), Internet of
Everything (loE), Network of Things (WoT) and
Network of Everything (WoE) have evolved into
such environments. In these systems, where the real
and virtual worlds are very close to each other and
smart environments occur in every part of life, a huge
volume of data is produced and most of this data is
unstructured. These data, which can be in many types
such as pictures, audio, text and video and transferred
over networks, have also started to be stored in cloud
environments. Another issue related to these data is
that they have a variable and dynamic, in other
words, flowing structure, especially human-sourced
data, such as social media data. On the one hand, new
data from the devices is included in the system or
some data is interrupted, on the other hand, changes
may occur in the existing data. The analysis of the
collected data therefore becomes more complex. For
this reason, the concept of "big data" has become
very controversial, especially in recent years [11-13].
Convolutional neural networks (CNN) have lately
demonstrated promising results in the area of image
classification [1]. Most of these systems were
dependent on specialized libraries or frameworks. In

90

TJPS

this article, Theano and TensorFlow, two well-liked
CNN frameworks are examined [2]. The target
challenge is to identify 1-9 handwritten digits.
MNIST, a well-researched database, is employed for
this task because it offers great chances to contrast
several frameworks with actual data. The study also
clarifies that CNN needs a lot of data to train well and
generate accurate results. Often, by seeing such
problems through the lens of big data, the solutions
can be discovered [3]. A standardized comparison of
the networks' performance in a Big Data setting using
distributed computing is given, as implied by the
document's title. The same code with the same
structure can be reused using the higher-level library
"Keras," which uses the mentioned capabilities
(Theano or TensorFlow) of Ease of use [7-10].

The primary issue is comparing a CNN's performance
in a classification challenge involving images from
the MNIST database [7]. Keras is used as the
backend, with either TensorFlow or Theano being
compared. This CNN's effectiveness is measured in
terms of assessment error and training time, allowing
for future determination of the best backend in any
given scenario. In addition, the CIFAR10 database
and the Fashion MNIST (FMNIST) database, both of
which contain images of ten different types of black
and white clothing, are used for testing (10 colour
images of dogs, birds, deer, cats, frogs, horses, boats,
planes, cars and trucks). However, in order to speed
up the overall process, the same CNN is trained on
multiple cores (CPUs and GPUs) at the same time.
The MNIST and FMNIST datasets are examined for
the final scenario. According to [12], the primary goal
is to compare the execution times of each backend to
determine which is more efficient for distributed
computing.

A. Research Methodology, Proposed Solution and
Implementation

This section is divided into three parts. First, the
common parts contained in the solution of all
experiments carried out are analyzed. These parts are
the neural network’s architecture, the programming
language used for its realization and the framework
used. Then, the solution and the proposed
implementation for each particular case (distributed
and non-distributed) are discussed. The order of this
section is shown below:

1. Network architecture, programming language and
framework.

2. Solution and implementation of non-distributed
case.

3. Solutions and implementation of distributed case.
B. Network Architecture, Programming Language
And Framework

1) Programming Language

This project used Python and RelLu, the premier
language for machine learning architectures.

2) Network Architecture

This project's main case, MNIST, was improved for a
network architecture, which was then applied with

Tikrit Journal of Pure Science Vol. 28 (1) 2023

additional databases. FMNIST and CIFAR10 were
projected to perform poorly in terms of evaluating
error analysis. The network's MNIST training error
was within desirable margins for the chosen
architecture, as provided in [4]. The network's layers
were as follows:

e Convolutional layer of 30 features with a size of
5x5 pixels and with the activation function of
rectification or ReLu.

e Max-pooling layer with a size of 2x2 pixels.

e Another convolutional layer but this time with 15
features, size 3x3 pixels and RelLu activation
function.

e A layer with a maximum pooling size of 2x2
pixels.

e To prevent overtraining, the Dropour layer was in
charge of excluding a specific number of neurons, in
this case 20%.

o The following fully connected layers processed
the data that was transformed into a vector by the
Flatten layer.

o Layer with ReLu activation function and 128 fully
connected neurons.

e Layer with ReLu activation function and 50 fully
connected neurons.

e Output layer with 10 neurons (one for each class).
3) Framework

As mentioned in this paper, all experiments employed
Keras with TensorFlow and Theano backends to
compare performance.

C. Solution and Implementation of Non-Distributed
Case

The experiment was launched on the farm with
specifying to use either a GPU or a CPU; so, the
farm's resource manager either reserved one for you
or allocated a specific processor. To reduce execution
time, the NVIDIA GeForce RTX 2080 Ti was the
farm's most powerful GPU. After choosing the neural
network model and processor, it was time to decide
how to train and compare this model. To get a true
picture of training times and evaluation error, ten
experiments per instance were performed and the
mean and variance were provided. The overall
execution time included the connection with the farm
and its management, system, and user times. The
GPU execution time was taken into account. The
model was trained for 200 epochs; however,
validation values were received epoch by epoch to
track precision, in addition to having error graph.
Knowing which data would be compared, just the
experiments—two for each database—remained (one
for TensorFlow and one for Theano). The mean and
variance of each group of ten experiments were
displayed. These experiments are listed below:

1. MNIST used Theano and TensorFlow as the
backends.

2. FMNIST used Theano and TensorFlow as the
backends.

3. CIFAR10 used Theano and TensorFlow as the
backends.

TJPS

They were six from the prism of three tests (MNIST,
FMNIST, and CIFAR10) with the two backend
variations for comparison. Thus, only three cases of
these six in groups of two were analysed for
experimentation.

D. Distributed Case Solution and Implementation
The Elephas library converted Keras code into Spark
with minimal instructions, allowing Spark's
distributed case to keep the network's core and
perform effective analysis [9]. The study used
MNIST and FMNIST data and only four simulations
per experiment. To provide variety, MNIST
experiments were run on five machines or nodes with
four cores each and four machines with five cores
each. Starting with the last enumeration in the
previous section, the experiments are listed as
follows:

1. Performance comparison of MNIST that spread
across five nodes with four cores per node and four
nodes with five cores per node using the Theano and
TensorFlow backends.

2. A performance comparison between the Theano
and TensorFlow backends for FMNIST utilizing the
distribution that produced the best results for MNIST.
3. The data from the undistributed case was utilized
to establish how many epochs were necessary, and
the number of epochs to be investigated was fixed.
I1. Experiment and Analysis

The comparative results from each experiment were
shown, followed by a succinct interpretation of each:
A. Evaluation of MNIST Performance on Both the
Theano and TensorFlow Backends

The comparison figure of the times in this example is
shown below:

400 33829

350 324.08
300
250
200
s 120.66 14398
100
50 20.33 21.83
0
Theano TensorF low

= Average user time (s) ™ Average system time (s)

Total mean time (s)

Fig. 1: Comparison of execution times for the case of
non-distributed MNIST

mMedium validation error using Theano

mMedium validation error using TensorFlow

1.20%
1.00%
0.80%
0.60%
0.40%
0.20%

0.00%

mumber of epochs

Fig. 2: Comparison of validation errors by epoch for the
case of non-distributed MNIST

91

Tikrit Journal of Pure Science Vol. 28 (1) 2023

It was observed that Theano is clearly superior to
TensorFlow in terms of timing. Now, it is time to
show graphically the evolution of the mean of the

Enor by epoch

30 epochs. MNIST Theano

e
E
¥

epoch

TJPS

error per period that they have had and its standard
deviation (represented by the character *) in the cases
of Theano and TensorFlow:

Ervex by rpoch

200 epochs. MNIST Theano

Bl

Fig.3: MNIST Theano, 50 and 200 epoch validation error mean and standard deviation

Exnon b epurk

50 epochs. MNIST TensorFlow

Meam

‘¥ Mem

gk

Emmin, e

200 epochs. MNIST TensorFlow

Fig. 4: MNIST TensorFlow, 50 and 200 epoch validation error mean and standard deviation

Finally, the two figures of this comparison were
broken down into periods. In this case, it was clear
that both Theano and TensorFlow have very similar
features and a similar evolution. Both of them
achieved a validation error below 1% from 10
epochs, a very optimal figure. In order to avoid
overloading the document with plots, only the 50-
epoch plots for Theano and TensorFlow were shown
for the following experiments.

B. Evaluation of FMNIST Performance on Both the
Theano and TensorFlow Backends

Now, the times obtained by training the FMNIST
database are shown as follows:

400 336.18 351.68
300
200 125.95 151.72
100 -20.51 23.04
0
Theano TensorFlow

B Average user time (s) M Average system time ()

Total mean time (s)

Fig. 5: Comparison of execution times for the case
of non-distributed FMNIST

92

15.00%

10.41%

10.32%
AT%
S
BT
874%

B 33%
8.47%

8
8

10.00%
5.00%
0.00%

10 50 100

m Medium validation error using Theano

200

number of epochs
m Medium validation error using TensorFlow

Fig. 6: Comparison of validation errors by epoch for the
case of non-distributed FMNIST

As was the case with MNIST, it was observed that
Theano is clearly superior in time. Now, it is time to
present the graphs (only those of 50 epochs) and the
comparative table in terms of validation errors:

Tikrit Journal of Pure Science Vol. 28 (1) 2023 I JP S

50 epoch FMNIST Theano . 50 epoch FMNIST TensorFlow

tmhy

Fig. 7: The 50 epoch FMNIST Theano and TensorFlow validation error mean and standard deviation
Table 1: Comparison of the data obtained using distributed computing with the MNIST and FMNIST

databases
Setting Backend Total average time Average execution Average handling Mean evaluation error
(minutes) time per core (minutes) | time per task (ms)

5 nodes with 4 TN* 50 41 80 0.74%

MNIST cores per npde TE** 8.29 6.95 81.25 0.75%

4 nodes with TN* 57 40 87.75 0.70%

5 cores per node TFE** 9.31 7.18 83.5 0.74%

FMNIST TN* 61.71 27.03 77.52 0.091

* Theano, ** TensorFlow
00 The faults were extremely identical between each
350 backend, just like in MNIST; however, they were
300 much more severe in this situation because the
i;g e network was not designed for this database. _
150 e ion As illustrated in figure 8, the behavior of the previous
100 cases was maintained in the scenario where CIFAR10
50 20.58 was not distributed. Figure 9 compares validation
o " —) errors by epoch. A deep learning model's
Averageuser Average system Total average . R

time () time(s) time(s) performance on the validation set was measured
Fig. 8: Comparison of execution times for the case of using a metric called validation loss. The dataset's

CIFAR10 not distributed validation set is a section set aside to check the
model's efficacy. Similar to the training loss, the
validation loss was determined by adding the errors

0.34 for each example in the validation set.

032 The similarity between the backends was maintained,;

03 in this case, the network was much less optimized and

28 - - - the errors were much higher in general.
0.26

10 50 100 200
m Medium validation error using Theano mumber of epochs

0.36

0.345

2911

0.2916
29

0
0

m Medium validation error using TensorFlow

Fig. 9: Comparison of validation errors by epoch
for the case of CIFAR10 not distributed

Exror by epoch Extox by epoch

Mo
Dlean

cpoch l apoch
Fig. 10: Mean and standard deviation of the validation error in 50 epochs, CIFAR10 Theano (left) and
CIFAR10 Tensor Flow (right)

93

Tikrit Journal of Pure Science Vol. 28 (1) 2023

C. Evaluation of the Performance of the Theano and
TensorFlow Backends Using MNIST Distributed
Across Five Nodes with Four Cores Each and Four
Nodes with Five Cores Each

Starting experiments on GPUs was difficult, so they
were started on CPUs [8]. Theano CPU execution can
take up to an hour, so instead of ten simulations like
in the non-distributed case, four were run. Finally, 50
epochs were ideal for training from the non-
distributed case, so they were started immediately.
The Spark interface reported how many tasks were
executed, in which core and node, and how many
total tasks were involved. It also provided task
management, parallelization, and median execution
times across tasks and cores. To avoid filling the
document with images of all executions, images of
the Spark interface from a Theano backend and
TensorFlow backend execution was included, but the
data representing the averages of all executions was
compared. The data to compare were as follows:

e The length of time, on average, taken to complete
the execution since Spark launched the process.

e The median execution times averaged across all
tasks (since each task was executed in a core, it could
be said that this time was also the mean per core). It
was assumed that this data represented the average
execution time per core even though it actually
represented the average of medians.

e The management and distribution time allocated
to each task in Spark was referred to as "Garbage
collection time" or GC Time. The average of the
medians that the experiment vyielded was also
calculated from this data, but it was used to determine
the average management time per task.

e Finally, each case's mean evaluation error was
calculated.

Theano's management time was low, but its execution
times were much longer than TensorFlow's (see Table
1) (one was in milliseconds and the other in the order
of minutes, respectively). Because they were similar
to each other and the non-distributed case, the
computational environment did not affect average
evaluation errors. The FMNIST experiment used
Spark with 5 nodes and 4 cores because it was
slightly faster across all measured times.

References

[1] Jmour, N., Zayen S., & Abdelkrim, A. (2018)
Convolutional neural networks for image
classification. The 2018 International Conference on
Advanced Systems and Electric Technologies
(IC_ASET), pp. 397-402, Electronic ISBN:978-1-
5386-4449-2, DOI: 10.1109/ASET.2018.8379889

[2] Shatnawi, A., Al-Bdour, G., Al-Qurran, R. &
Al-Ayyoub, M. (2018). A comparative study of open
source deep learning frameworks. The 2018 9th
International Conference on Information and

TJPS

D. Comparison of Performance Using the
Distribution that Produced the Best Results for
MNIST and FMNIST Using the Theano and
TensorFlow Backends
This case was not taken into consideration because
the neural network was not optimized for FMNIST
and the probability of error data was not obtained
with the network. TensorFlow and Theano
simulations were run twice for each example to create
a comparison table with results averages like the
previous case. The previous experiment concluded
that this example used five nodes with four cores
each. Theano had much higher execution times than
TensorFlow, but the evaluation error was very
similar. Non-distributed case and system management
and parallelization were negligible compared to
execution times.
I11. CONCLUSIONS AND FUTURE WORK
Theano was more efficient in convolutional neural
network training times than TensorFlow. Even
though the error was very similar in both cases,
despite the obvious loss of precision with the
FMNIST database and even more so with CIFAR10
versus MNIST. Thus, Theano is a better backend for
executions like those in this document. Since the
error is constant after 50 epochs, more training
epochs are not recommended. Since the distributed
case was run on CPUs instead of GPUs, this setup's
time savings cannot be compared. GPUs in both
environments reduced resource management and
parallelization time, which was much lower than
execution time. Given the significant time difference
between using Theano and TensorFlow as a backend,
it was concluded that Theano is not well optimized to
be launched in a distributed environment or over
CPUs. In some cases, the MNIST execution examples
had performed better with a configuration of five
machines with four cores each rather than four
machines with five cores each. Evaluation error had
remained constant for Theano and TensorFlow in
case of four-core machines. Evaluation errors were
similar in distributed and non-distributed executions.
This document demonstrated that Theano is not very
well optimized when using distributed computing
through Spark on several CPUs. It may be
worthwhile to conduct further research to determine
whether this is because resources are distributed
unevenly or because Theano is being run on CPUs
rather than GPUs.

Communication Systems (ICICS), pp. 72-77, doi:
10.1109/1ACS.2018.8355444. Electronic ISBN:978-
1-5386-4366-2

[31 Yu, L, Li, B., & Jiao, B. (2019). Research and
implementation of CNN based on TensorFlow. IOP

Conference Series: Materials Science and
Engineering. 490. 042022. 10.1088/1757-
899X/490/4/042022.

[4] Elshawi, R., Wahab, A., Barnawi, A., & Sakr, S.
(2021). DLBench: A comprehensive

94

Tikrit Journal of Pure Science Vol. 28 (1) 2023

(5]

(6]

(7]

(8]

(9]

experimental evaluation of deep learning
frameworks. Cluster Computing, 24, 2017-2038.
https://doi.org/10.1007/s10586-021-03240-4
Karaman, D., Goziacik, N., Alagdz, M. O.,
flhan, H., Cagal, U, & Yavuz, O. (2015).
Managing 6LOWPAN sensors with CoAP on
Internet. The 23nd Signal Processing and
Communications Applications Conference (SIU),
IEEE, Malatya, Turkey, 1389-1392, doi:
10.1109/S1U.2015.7130101.

Yapici, M., Tekerek, A., & Topaloglu, N. (2019).
Performance comparison of convolutional neural
network models on GPU. IEEE 13" International
Conference on Application of Information and
Communication Technologies (AICT), Baku,
Azerbaijan, 1-4, doi:
10.1109/AICT47866.2019.8981749

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.
(2020). A survey of the recent architectures of
deep convolutional neural networks. Artificial
Intelligence Review,53, 5455-5516.
https://doi.org/10.1007/s10462-020-09825-6.
Rahman, M. M., Islam, M. S., Sassi, R., &
Aktaruzzaman, M. (2019). Convolutional neural
networks performance comparison for
handwritten Bengali numerals recognition. SN
Applied Sciences,1, 1660,
https://doi.org/10.1007/s42452-019-1682-y
Rahman, N. R., Hasan, M. A. M., & Shin, J.
(2020). Performance comparison of different
convolutional neural network architectures for

TJPS

plant seedling classification. The 2nd
International ~ Conference on Advanced
Information and Communication Technology
(ICAICT), Page 146-150.

[10] Prilianti, K. R., Brotosudarmo, T. H. P., Anam,

S., Suryanto, A. (2019). Performance comparison
of the convolutional neural network optimizer for
photosynthetic pigments prediction on plant
digital image. AIP Conference Proceedings,
2084(1), https://doi.org/10.1063/1.5094284

[11]Tan, Y., Li, Y., Liu, H., Lu, W., & Xiao, X.

(2020). Performance comparison of data
classification based on modern convolutional
neural network architectures. The 39th Chinese
Control Conference (CCC), Shenyang, China,
815-818, doi:
10.23919/CCC50068.2020.9189237.

[12] Gambo, F. L., Wajiga, G. M., Shuib, L., Garba,

E. J., Abdullahi, A. A., Bisandu, D. B. (2021).
Performance comparison of convolutional and
multiclass neural network for learning style
detection from facial images. EAl Endorsed
Transactions on Scalable Information Systems,
9(35), 1-13, doi: 10.4108/eai.20-10-2021.171549

[13] Ghafoorian, M., Karssemeijer, N., Heskes, T.,

van Uden, I. W. M., Sanchez, C. I., Litjens, G.,
...& Platel, B. (2017). Location sensitive deep
convolutional neural networks for segmentation
of white matter hyperintensities. Scientific
Reports, 7, 5110. https://doi.org/10.1038/s41598-
017-05300-5

daddall clibull cdSie Jal L8N A guanl) G JSLa ¢l Cuad

uadlddl

il 5o aladial PLA (e L8N A greanll GIKE) Ll 40 Jae Ak da pladiad e Yoy < J8adU JUie e 3T aladia ey
ey -8 Jiae il e gl a8y W) s Gaas g smge & MNIST @lilull saels o @llyy 5o ddiay 4 ja MNIST
Ll g paee Gaam ¢ LAY (m al ULl e 5a€ 508) A8ty 4 gramnll S 2 liad (ARl il anadi cu i) Jaf o celld
bl AT e 0l 4 Jae o (A g g 13a e JSLe Al bl o) 33l g Le 135S e 1agl LAY Jualial (e e
Uil saeld pladnn) o3 . duee ASaa 4 Lagilaf 83 5n (sal Al 31 030 & « TensorFlow s Theano «s g& LAl 43 guaall GISEY
238 Ol g gyl Caay a9 ey At) il g e 2l ady A0Sl G5 1 e il 3 Ates ciaaad) A 23] MNIST
Aatialy et all UL Ay 8 IS 038 ool A5 Jae paies (13 e Yy ofpan Cared) 13g) Al ® 45 Jaa Jaih i (0 Al)
#lasiul) CIFARLO 5 Fashion MNIST i FMNIST @iy sacls jlasl Lad s .Distributed Computing de jpall duu sl
IS5 JSsel) et e Ae 3) Gl pladi) s AMINIST 2 Lo () 45 J2all Bl pos g Lo ¢(8LEN) A gl S ppanals (s
.(TensorFlow sl Theano «llla 3) el) €3al acall padnies 3l gcKeras awd Aol (g 5ue <3 45K alasin) Juad 2a
CNN @l€ed il el dyloal) 20l Aot jriadl 7 ke (5)5l GPU okt Jlae (& o slal) g &gaddl 6 500 jllin ol
028 &5 Jhe o e gl o3a A L lidatll Gl o)) ilaw i e Sl 1 (e 2paad) 22 5 Y (@l a5 Sl bl Gile guae e
Ve (e 130 aaaigeela¥) ol Led Jainadl VIl A 3) ALYl o) gaiall e A gde goaa yue dulin Caliulail)
1Y g s o oS A

95

https://doi.org/10.1007/s10586-021-03240-4

	I. Introduction
	A. Research Methodology, Proposed Solution and Implementation
	This section is divided into three parts. First, the common parts contained in the solution of all experiments carried out are analyzed. These parts are the neural network's architecture, the programming language used for its realization and the frame...
	1. Network architecture, programming language and framework.
	2. Solution and implementation of non-distributed case.
	3. Solutions and implementation of distributed case.
	B. Network Architecture, Programming Language And Framework
	1) Programming Language
	2) Network Architecture
	3) Framework

	C. Solution and Implementation of Non-Distributed Case
	D. Distributed Case Solution and Implementation

	II. Experiment and Analysis
	A. Evaluation of MNIST Performance on Both the Theano and TensorFlow Backends
	B. Evaluation of FMNIST Performance on Both the Theano and TensorFlow Backends
	C. Evaluation of the Performance of the Theano and TensorFlow Backends Using MNIST Distributed Across Five Nodes with Four Cores Each and Four Nodes with Five Cores Each
	D. Comparison of Performance Using the Distribution that Produced the Best Results for MNIST and FMNIST Using the Theano and TensorFlow Backends

	III. Conclusions and future work
	References

