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ABSTRACT 

In order to get rid of or reduce the abnormal values of some 

phenomena that may be the reason for not obtaining the 

desired results. This makes us to get conclusions far from 

reality for the phenomenon we are studying. That the 

traditional nonparametric estimators are very sensitive to 

anomalous values, which prompted us to use the fortified 

estimators because they are not much affected by the 

anomalous values, as well as the nonparametric regression 

because it does not depend on the previous determinants or 

assumptions, but it depends directly and fundamentally on the 

data. 
 

 

1. Introduction 
Researchers face several problems, including that the 

data for some phenomena may contain anomalous 

values, which can lead to inaccurate results, so these 

inaccurate results will lead to conclusions that are far 

from the reality of the phenomenon under study, so it 

is necessary to conduct research on these are 

anomalies. In addition to ensuring their proportion to 

the total sample size that represents the phenomenon 

under study, the traditional nonparametric estimators 

are very sensitive to outliers, which prompts 

researchers to use immune estimators because they 

are not affected by the presence of outliers, which 

does not take a predetermined form of a function, but 

its estimates based on the data, and thus 

nonparametric regression has been addressed because 

it does not depend on previous determinants or 

assumptions, but rather depends directly and 

fundamentally on the data. 

 

2. Traditional Nonparametric Capabilities: 
2.1. Libyan functions

 
[1-6]:- 

It is the simplest form of nonparametric regression to 

find a data pattern without the need for a parameter 

model through a series of weights, and it has several 

names, including (a window function, a weight 

function, a basic function, and a shape function), and 

it is characterized by being a real function symbolized 

by the symbol, symmetric, continuous, and its 

integration equal to one and the derivative. The 

second is known and limited 𝑘(ℎ), meaning that 

∫ 𝑘(ℎ)𝑑ℎ =
1         , ∫ ℎ𝐾(ℎ)𝑑ℎ = 0      , ∫ ℎ2𝐾(ℎ)𝑑𝑧 = 𝑘2 <
∞         (1)  
Among the most used Libyan functions are: 

Gaussian kernel is known by the following formula:- 

𝑘(𝑥) =
1

√2𝑥
𝑒𝑥𝑝(−𝑥2/2)      (2)  
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And the Epanechnikov kernel is known by the 

following formula: 

𝑘(𝑥) = {
3

4
(1 − 𝑥2)  𝑖𝑓 |𝑥| ≤ 1 

0                                otherwise
       (3)  

There are two series of Libyan functions: the Libyan 

functions of least variance, which reduce the 

variance, and the ideal Libyan functions, which 

reduce the mean of integrated error squares (MISE) 

and was derived in 1969 by the world𝐸𝑝𝑎𝑛𝑐ℎ 𝑛𝑖К𝑜v. 

that functionKernel can be written in the following 

form: 

𝑓(𝑥) = 𝐸(𝑦\𝑥)         = ∫
𝑦𝑓(𝑥,𝑦)

𝑓(𝑥)
  𝑑𝑦,        (4)  

Since: 

Y: is the (dependent) response variable x,: 

explanatory variable. 

Also, the weight chain 𝑤𝑖  Kernel estimates are 

written as follows: 

𝑤𝑖(𝑥) = 𝑘ℎ(𝑥 − 𝑥𝑖)/𝑓ℎ(𝑥)                     (5)  
Since: 

 h: the bandwidth is greater than zero. 

 𝑓ℎ(𝑥): the estimated density function. 

 𝑘ℎKernel function. 

𝑤𝑖(𝑥𝑖) =
𝐾(

𝑥−𝑥𝑖
ℎ
)

∑ 𝑘(
𝑥−𝑥𝑖
ℎ
)𝑛

𝑖=1

   (6)  

2.2. The Core Estimator of Nadaria Watson [7- 12]
 
 

 Nadaraya - Watson Kernel Estimator 

It is the oldest and most widespread and widely used 

nonparametric capabilities, which were suggested by 

the two researchers Nadaraya - Watson Kernel in 

1964, and it is derived based on the series of weights 

and is used in the static and random design. It is 

characterized by its continuous and positive function, 

which has an integral equal to one. 

The estimate can be derived 𝑚(𝑥) as follows:-   
𝑚(𝑥) =

∫
𝑦𝑓(𝑥,𝑦)

𝑓(𝑥)
  𝑑𝑦 =

∫
𝑦
1

𝑛
∑ 𝑦𝑖𝐾ℎ1(𝑥−𝑋𝑖)𝐾ℎ2(𝑦−𝑌𝑖)
𝑛
𝑖=1

1

𝑛
∑ 𝐾ℎ1(𝑥−𝑥𝑖)
𝑛
𝑖=1

  𝑑𝑦     (7)   

𝑓(𝑥) =
1

𝑛
∑ 𝐾ℎ1(𝑥−𝑋𝑖) ∫ 𝑦𝐾ℎ2(𝑦−𝑌𝑖)𝑑𝑦
𝑛
𝑖=1

1

𝑛
∑ 𝐾ℎ1(𝑥−𝑋𝑖)
𝑛
𝑖=1

  

= 
1

𝑛
∑ 𝐾ℎ1(𝑥−𝑋𝑖)𝑌𝑖
𝑛
𝑖=1

1

𝑛
∑ 𝐾ℎ1(𝑥−𝑋𝑖)
𝑛
𝑖=1

  

∑ 𝐾ℎ1(𝑥−𝑋𝑖)𝑌𝑖
𝑛
𝑖=1

∑ 𝐾ℎ1(𝑥−𝑋𝑖)
𝑛
𝑖=1

  

�̂�𝑁𝑊(𝑥𝑖) =
∑ 𝑦𝑖𝐾(

𝑥−𝑥𝑖
ℎ
)𝑛

𝑖=1

∑ 𝑘(
𝑥−𝑥𝑖
ℎ
)𝑛

𝑖=1

, ℎ > 0          (8)  

Since:- 

𝐾(
𝑥−𝑥𝑖

ℎ
) The Libyan function is continuous and 

specific. 

ℎ: The boot parameter has a value greater than zero. 

It controls the bootstrap quantity of the output 

estimator. 

Based on the weights series method: 

�̂�𝑁𝑊(𝑥𝑖) = ∑ 𝑤𝑖(𝑥)𝑌𝑖
𝑛
𝑖=1   Because𝑤𝑖Weight 

function ∑ 𝑤ℎ(𝑥 − 𝑋) = 1
𝑛
𝑖=1 , 

And to find the estimator of the function at the point 

x in its domain, we specify the bandwidth, which is 

the boot parameter h. It controls the width of the 

parameter around x. To ensure smoothing, the views 

close to x are given more weight than the farthest 

views, which is determined by the kernel functions in 

the form of weights. 

2.3. K-Nearest Neighbor Estimator [13-16] K-

Nearest Neighbor Estimator 

This estimator depends on finding, the distance 

between each site in the area and adjacent siteswhich 

is represented by a pointIt is used in the random 

modelThat is, the values that are used in calculating 

the mean are those values corresponding to the values 

of X observed to the point X in the Euclidean 

distance at which we want to estimate m.. 

The series of weights is defined in the method 𝑤𝑛𝑖  K-

N-N as it comes 

𝑊𝑛𝑖(𝑥) = {
1

𝑘
  ,    𝑖𝑓    𝑖 = 1,2, . . . , 𝑛

0                    otherwise
                  (9)  

�̂�𝐾−𝑁−𝑁(𝑥𝑖) =
1

𝑘

∑ 𝑦𝑖𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
)𝑛

𝑖=1

∑ 𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
) 𝑛

𝑗=1

,     𝑖, 𝑗 =

1,2, . . . . , 𝑛            (10)  
Since (𝑘𝑛)K represents a constrained and nonnegative 

kernel function, the Euclidean distance between x and 

k from the nearest neighbor of x. 

The introductory parameter is calculatedk through: 

𝑘𝑛 = 𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2 𝑛

𝑘=1      , 𝑖, 𝑗 =

1,2, . . . . . . , 𝑛                 (11)  
over here, K = Kn when ∞⟶kn and∞⟶n. mean 

ingelse, if applied function kernel on this estimator as 

in the Nadaraya-Watson model, k represents the 

smoothing parameter corresponding to the value h in 

the Nadaraya-Watson estimator. 

3. Fortified capabilities
]:
 Robust Estimators [17, 

18, 19]
 
 

Several definitions of immunity have been provided 

Robust ness, Box first From mention it because 

method statistic it's called impregnableIf the 

statistical inference is not significantly affected by the 

violation of any of its prerequisites. 

In general, immunity is to ignore outliers or reduce 

their impact on the data, and a immune estimate is an 

estimate that has little effect on outliers and has an 

efficiency similar to least squares estimators in the 

event of outliers or outliers. 

Thus, the fortified capabilities can be explained as 

follows:- 

When one of the regression assumptions is defective 

or there are outliers or random errors distributed in a 

distribution other than a normal distribution 

consistent with the method used, the estimator retains 

the expected properties of the estimator in the 

estimator and when the data violate the analysis is 

used in the case of one condition, the effect of the 

immunogenicity estimator is small for a broad 

distribution.  

3.1. Appraisal methods For Tress  

There are many methods of estimating the 

nonparametric regression through the regression 

equation represented by the explanatory variables (𝑥) 
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and the response variable (𝑦) to estimate the 

nonparametric regression function in the equation:𝑥𝑦 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖, 𝑖 = 1,2,3…… , 𝑛      (12)  

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝑘(

𝑥−𝑥𝑖

ℎ
)        (13)𝑛

𝑖=1   

3.2. The Core Estimator of the Hippocampal 

Nadaria Watson [20]
 

Robust Nadaraya - Watson Kernel Estimator 

The hippocampal Nadaria-Watson core estimator is 

one of the most common estimators in the robust 

estimation methods, and when using the robust 

weight function.𝜓 The formula will be as follows:- 

�̂�𝑁𝑊(𝑥𝑖) = 𝜓𝑛
−1 ∑ 𝑤𝑖(𝑥)𝑌𝑖

𝑛
𝑖=1             (14)     

𝑊𝑛𝑖(𝑥) =
∑ 𝑘(

𝑥𝑖−𝑥𝑗

ℎ
) 𝑛

𝑗=1

𝑛−1∑ 𝑘(
𝑥𝑖−𝑥𝑗

ℎ
) 𝑛

𝑗=1

,          𝑗 =

1,2, . . . . , 𝑛         (15)  
Since:- 

𝐾(
𝑥−𝑥𝑖

ℎ
) The Libyan function is continuous and 

specific. 

h is a boot parameter and its value is greater than 

zero. 

𝑤𝑖  Endodontic weight function. 

The robust weight function is used (Huber)[21] It 

takes the following form: 

𝜓 = {
1                                        𝑖𝑓 |𝑒𝑖| < 𝑐
𝑐

|𝑒𝑖|
                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            (16)  

Because C takes the default value 1.345 

3.3. Robust K-Nearest Neighbor Estimator [22,23] 

We use the nearest neighbor estimator K-N-N in 

Strong estimation methods .For the nonparametric 

regression by substituting the robust weight function 

(𝜓) (as in the following formula:-  

�̂�𝐾−𝑁−𝑁(𝑥𝑖) =
1

𝑘

∑ 𝜓𝑦𝑖𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
)𝑛

𝑖=1

∑ 𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
) 𝑛

𝑗=1

    (17) 

𝑊𝑛𝑖(𝑥) =
𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
)

∑ 𝑘(
𝑥𝑖−𝑥𝑗

𝑘𝑛
) 𝑛

𝑗=1

,          𝑖, 𝑗 = 1,2, . . . . , 𝑛  

And the Probably The use of the robust weight 

function (Huber) As in the following formula:- 

𝜓 = {
1                                        𝑖𝑓 |𝑒𝑖| ≤ 𝑘

𝑘

|𝑒𝑖|
                              𝑖𝑓 |𝑒𝑖| > 𝑘

        (18)  

becausek takes the default value= 1.345,= standard 

deviation and it is calculated from the following 

formula:-𝜎 𝜎 

�̂� =
𝑀𝐴𝑅

0.6745
             (19)  

MAD represents average the rest the absolute. 

3.4. Method M Fortified: [24- 18] 

This method is considered one of the mostaIt is safe 

because of the high efficiency of obtaining abilities 

using the method of least squares, where the idea is 

based on reducing somefunctionserror instead of 

reducing the sum of squares.This method has also 

received a lot of attention by researchers because a 

more flexible and T Provide the possibility of direct 

generalization to multiple regression It was suggested 

by the researcher Huber (1973) , and the  idea of this 

method is to find the lowest value ofa and b and the 

hippocampal estimator is determined by a function 

test weight 𝜓. 

The linear regression model is described by the 

following relationship: 

𝑦𝑖 = �̀�𝑖𝛽 +  ε𝑖          (20)  
Estimator can get M by decreasing or minimizingThe 

following amount:-: 

𝑀𝑖𝑛∑ 𝜌(
𝑒𝑖

𝑠
) = 𝑀𝑖𝑛 ∑ 𝜌(

𝑦𝑖−𝑥�̀�𝛽

𝑠
)𝑛

𝑖=1      (21)𝑛
𝑖=1   

becauses is the measurement estimate and is found 

from the following equation 

𝑠 =
𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|

0.6745
=

𝑀𝐴𝐷

0.6745
           (22)  

MAD is the mean absolute deviation. 

(𝜌): The objective function has many properties, 

includin 

𝜌(𝑒) ≥ 0  

𝜌(0) = 0  

𝜌(𝑒) = 𝜌(−𝑒)  
𝜌(𝑒𝑖) ≥ 𝜌(𝑒𝑖) 𝑓𝑜𝑟 |𝑒𝑖| ≥ |𝑒𝑖|  
And the assuming that 𝜓 = �̀� differentiable around, 

called the effect curve 𝜌 

∑ 𝜓(
𝑦𝑖−𝑥�̀�𝛽

𝑠
)𝑛

𝑖=1 𝑥𝑖 = 0      

The weight function must be tested 𝜓 to determine 

the hippocampal estimator.  

∑ 𝜌(𝑦𝑖 − 𝑎 − 𝑏(𝑋𝑖 − 𝑥))𝑘 (
𝑋𝑖−𝑥

ℎ𝑛
)𝑛

𝑖=1 𝛿𝑖            (23)  

Or positional estimation of equations:- 

∑ 𝜓(𝑦𝑖 − 𝑎 − 𝑏(𝑋𝑖 − 𝑥))𝑘 (
𝑋𝑖−𝑥

ℎ𝑛
)𝑛

𝑖=1 𝛿𝑖 =

0               (24)   

∑ 𝜓(𝑦𝑖 − 𝑎 − 𝑏(𝑋𝑖 − 𝑥)) (
𝑋𝑖−𝑥

ℎ𝑛
) 𝑘 (

𝑋𝑖−𝑥

ℎ𝑛
)𝑛

𝑖=1 𝛿𝑖 =

0         (25)  
Since: 

𝜌(. ) a convex and symmetric function, 𝜓(. )derived 𝜌 

which is the fortified weight function, 𝐾(. ) the 

Libyan kernel function, ℎ𝑛, a series of positive 

numbers. 

Since the immunity of the estimator depends on the 

function of weightsψwhichcan defineHaIt is a set of 

functions on the basis of which the weights 

accompanying the observations are determined,It is 

possible to use the robust weight function (Huber) as 

in the following formula:- 

𝜓 = {
1                                        𝑖𝑓 𝑑𝑖 ≤ 𝑐
0                                       𝑖𝑓 𝑑𝑖 > 𝑐

        (26)  

Since it 𝑐 is the cutoff constant, it is the tabular value 

of the chi-square distribution with a degree of 

freedom 𝜌 and a significant level α. 

There are several functions on which the method 

depends Mimmune to it 

3.4.1. Function
 
Bisquare [29] 

It takes the following form 

𝜓 = {
(1 − (

𝑒𝑖

𝑐
)2)2                      𝑖𝑓 |𝑒𝑖| < 𝑐

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (27)  

On the assumption thatc takes the value 4.685 

3.4.2. Function Talkie
 
[30]  

It takes the following form 

𝜓 = {
𝑥(1 − (

𝑥

𝑐
)2)                     𝑖𝑓 |𝑥| < 𝑐

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (28)  
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and 𝑐  takes The following values are 4.685 and 6.0 

3.4.3. Function
 
Hampel [31] 

 

𝜓 =

 

{
 
 

 
 

1                                         𝑖𝑓 |𝑒| ≤ 𝑎

(
𝑎

|𝑒𝑖|
)                                        𝑖𝑓𝑎 < |𝑒𝑖| ≤ 𝑏

𝑎(𝑐−|𝑒𝑖|)

|𝑒𝑖|(𝑐−𝑏
                                𝑖𝑓 𝑏 < |𝑒𝑖| ≤ 𝑐

                       (29)

0                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

So that a,b,c constants 

3.4.4.  Function
 
Andrews[32]  

𝜓 =

{
(
𝑠𝑖𝑛

𝑥

𝑐
𝑥

𝑐

)                                        𝑖𝑓 |𝑥| ≤ 𝜋𝑐     

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (30)  

3.4.5. Trimmed Least Squares Method 
(33) (34) (35) (11) 

(12) (13) 

 Least Trimmed Squares (LTS) 

It was proposed for the first time by Rousseeuw in 

1984, where the sum of the squares of errors is 

minimized after they are arranged in ascending order. 

It is calculated from the following equation:- 

𝜚𝑙𝑡𝑠 = ∑ (𝑟2)𝑖: 𝑛            (31)ℎ
𝑖=1   

because ℎ. (𝑟2)1: 𝑛 ≤ (𝑟2)2: 𝑛 ≤ (𝑟2)𝑖: 𝑛 ≤. . . . . ≤
(𝑟2)𝑖: 𝑛Represents the square and ascending 

remainders, and h represents the observations that are 

adopted after eliminating outliers whose value is 

equal to 

ℎ =
𝑛

2
+

𝑝+1

2
, and represent, n and p are the given 

sample size and number of independent variables in 

the model, respectively. 

This method is characterized by having a high 

breakdown point equal to 0.5, which can be found 

from the following relationship: 

 𝐵𝑃 =
𝑛−ℎ

𝑛
 𝑏ut if the breaking point exceeds the 

aforementioned limit, then Na. The main 

disadvantage of can not distinguish between the good 

part and the abnormal part of the data The 

hippocampal LTS is the large number of operations 

required to sort the square values into a target 

function. 
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 مقارنة المقدرات الحصينه واللامعلميه للانحدار اللامعلمي

 أفراح محمد كاظم،  علي فاضل عبد الجبار
 الوسطى ةالتقني ةالجامع ، المعهد التقني كوت

 

 الملخص
جًننو ع بننرا اجعانننا نسننت ال مننأ لجننت الننت ال لو التقااننت مننأ القننيض الظننار  لنن عد الوننوابً التنني  نند ت ننوأ سنن   ا  نني  نندض  الحصننوع  اننى النتننارج الم

اًت الةمعاميننة التقااديننة سًننهاع لأ المقنند ً  التنني ند اًت  اسننتنتاجات  عانند   ننأ الوا ننة لاونناب حساسننة لايايننة لاقننيض الظننار  ، ممننا د عنننا الننى اسننت داض المقنند
ً ا  نالقيض الظنار  ، وكنرلح الانحنداً الةمعامني اًانات السنا قة ، ول نأ يعتمند  ظنكت  المحصنة لأنها لا تتنثرً كران لأنن  لا يعتمند  انى المحنددات لو الا ت

 م اظً ولساسي  اى ال ياناتع

 
 


