Differentiation of Multi-lithotypes Olistostromal Occurrences Associated with Iron Enrichment and Mineralization Within the Ophiolites of Choman Area, NE Iraq
Main Article Content
Abstract
The discovery of multi-lithotypes olistostromes deposits associated with potentially economically viable iron ore mineralizations in the Rayat region of NE Iraq are described in this study. The depositional and differentiation-classification characteristics of multi-lithotypes of olistostromes with distinct depositional and characteristics are reported here through detailed petrographic, mineralogical, and geochemical data, allowing for mineralization mechanisms assessment and associated hydrothermal and alteration processes. Ferruginous conglomerate lithotypes occur below the sandstone olistostromes lithotypes section of the investigated series. Through the ferruginous conglomerate olistostromes (FCO) lithotypes, there is a layer of potentially iron ore containing iron oxide (up to %42.55) and quartz with some minor spinel content. Below FCO, there are the horizons of FOpO and FSO, which are also rich in hematite quartz and calcite with some minor spinel content. A 2m thick transition zone (TZ) separates the poorly mineralized ophiocarbonatic olistostrome (OpCO) from FCO. The multi-lithotypes of olistostrome from bottom to top are serpentinite olistostrome (SO), ophiocarbonatic olistostrome (OpCO), ferruginous serpentinite olistostrome (FSO), ferruginous ophiocarbonatic olistostrome (FOpCO), ferruginous conglomerate olistostrome (FCO), and sandstone olistostrome (SstO). In addition to Fe, the other potential economic important elements include nickel (507 to 5816 mg/kg) and cobalt (47.2 to 328.3 mg/kg). The findings indicate that the Rayat olistostromes, such as SO, FSO, OpCO, FOpCO, FCO, and SstO, and the transition zone (TZ) are originated from a mixture of early hydrothermal alteration of serpentinites. The finding of olistostromes in the Rayat exposes NE Iraq as a potential mineral-rich sector.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Abbate, E.; Bortolotti, V. and Passerini, P. (1970). Olistostromes and olistoliths. Sedimentary Geology, 4(3-4):521-557.
[2] Pini, G.A. Camerlenghi, A. Festa, A. Lucente, C.C. Codegone, G. (2012). Sedimentary mélanges and fossil mass-transport complexes: a key for better understanding submarine mass movements? in Submarine mass movements and their consequences. Springer:585-594.
[3] Andronache, A. Pleș, G. Bucur, I. Ilieș, Iulia A. (2022). Microfacies and age of the Ceahlău Massif carbonate olistoliths (Eastern Carpathians, Romania): Remnants of a lowermost Cretaceous carbonate platform. Proceedings of the Geologists' Association.
[4] Bates, R.L. and Jackson, J.A. (1987). Glossary of geology: American geological institute. Alexandria, Virginia:788.
[5] Hsü, K.J. (1968). Principles of mélanges and their bearing on the Franciscan-Knoxville paradox. Geological Society of America Bulletin, 79(8):1063-1074.
[6] Raymond, L.A. (1984). Melanges: their nature, origin, and significance. Geological Society of America Special Paper, 198:7-20.
[7] Festa, A. Pini, G.A. Dilek, Y. Codegone, G. (2010). Mélanges and mélange-forming processes: a historical overview and new concepts. International Geology Review, 52(10-12):1040-1105.
[8] Festa, A. Pini, G.A. Dilek, Y. Codegone, G. Vezzani, L. Ghisetti, F. Lucente, C.C. Ogata, K. (2010). Peri-Adriatic mélanges and their evolution in the Tethyan realm. International Geology Review, 52(4-6):369-403.
[9] Festa, A. Dilek, Y. Gawlick, H.J. Missoni, S. (2014). Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards, Marine Geology: p.1-4.
[10] Festa, A. Ogata, K. Pini, G.A. Dilek, Y. Alonso, J. (2016). Origin and Significance of Olistostromes in the Evolution of Orogenic Belts: A Global Synthesis. Gondwana Research, 39:180-203.
[11] Faghih, A.; Kusky, T. and Samani, B. (2012). Kinematic analysis of deformed structures in a tectonic mélange: a key unit for the manifestation of transpression along the Zagros Suture Zone, Iran. Geological Magazine, 149(6):1107-1117.
[12] Rast, N. and Horton Jr. J. W. (1989). Melanges and olistostromes in the Appalachians of the United States and mainland Canada; An assessment. Geological Society of America Special Paper, 228:1-16.
[13] Jassim, S.Z. and Goff, J.C. (2006). Geology of Iraq: Dolin. Geological Society of London, 5pp.
[14] Fouad, S.F. (2012). Western Zagros fold–thrust belt, part I: The low folded zone. Iraqi Bulletin of Geology and Mining, 5:39-62.
[15] Al-Bassam, K.S. (2013). Mineral resources of Kurdistan region, Iraq. Iraqi Bulletin of Geology and Mining, 9(3):103-127.
[16] Buda, G. and Al-Hashimi, W. (1977). Petrology of Mawat ophiolitic complex. Jour. Geol. Soc. Iraq, X: p. 69-98.
[17] Ismail, S.A. Arai, S. Ahmed, A.H. Shimizu, Y. (2009). Chromitite and peridotite from Rayat, northeastern Iraq, as fragments of a Tethyan ophiolite. Island Arc, 18(1):175-183.
[18] Ahmed, I.N.; Kettanah, Y.A. and Ismail, S.A. (2020). Genesis and tectonic setting of high-Cr podiform chromitites of the Rayat ophiolite in the Zagros Suture Zone, northeastern Iraq. Ore Geology Reviews, 123:103583.
[19] Pirouei, M. Kolo, K. Kalaitzidis, S. Abdullah, S.M. (2021). Newly discovered gossanite-like and sulfide ore bodies associated with microbial activity in the Zagros ophiolites from the Rayat area of N.E. Iraq. Ore Geology Reviews, 135:104191.
[20] Watkinson, Hak, J.D. and Al-Bassam, K. (1983). The origin of the Marabasta base metal deposit, NE Iraq. Věstník Ústředního ústavu geologického, 58(3):141-148.
[21] Numan, N.M. (1997). A plate tectonic scenario for the Phanerozoic succession in Iraq. Iraqi Geological Journal, 30(2): 85-110.
[22] Lawa, F. Koyi, H. and Ibrahim, A. (2013). Tectono‐stratigraphic evolution of the N.W. segment OF the Zagros fold‐thrust belt, Kurdistan, NE Iraq. Journal of Petroleum Geology, 36(1):75-96.
[23] Vasiliev, M. and Pentelkov, V. (1962). Prospecting exploration of the Bardi-Zard chromite occurrence and adjacent areas. Iraqi Geological Survey.
[24] Pirouei, M. Kolo, K. and Kalaitzidis, S.P. (2020). Chromium-rich muscovite mineralization in Zagros ophiolites in Iraqi Kurdistan: a study on fuchsite paragenetic association with listvenite types. Arabian Journal of Geosciences, 13(17):1-13.
[25] Pirouei, M. Kolo, K. and Kalaitzidis, S.P. (2020). Hydrothermal listvenitization and associated mineralizations in Zagros Ophiolites: Implications for mineral exploration in Iraqi Kurdistan. Journal of Geochemical Exploration, 208:106404.
[26] Al-Mehaidi, H. (1974). Report on Geological investigation of Mawat-Chromite area Iraq. Iraqi Geological Survey.
[27] Ali, S.A. Buckman, S. Aswad, K.J. Jones, B.G. Ismail, S.A. Nutman, A.P. (2013). The tectonic evolution of a Neo‐Tethyan (Eocene–Oligocene) island‐arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Island Arc, 22(1):104-125.
[28] Moores, E.M. Kellogg, L.H. and Dilek, Y. (2000). Tethyan ophiolites, mantle convection, and tectonic" historical contingency": A resolution of the" ophiolite conundrum". Special papers Geological society of America: p. 3-12.
[29] Sissakian, V.K. and Fouad, S.F. (2015). Geological map of Iraq, scale 1: 1000 000, 2012. Iraqi Bulletin of Geology and Mining, 11(1): 9-16.
[30] Konhauser, K.O. (1998). Diversity of bacterial iron mineralization. Earth-Science Reviews, 43(3-4):91-121.
[31] Kolo, K. Konhauser, K. Krumbein, W.E. Ingelgem, Y.V. Hubin, A. Claeys, P. (2009). Microbial dissolution of Hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions. Astrobiology, 9(8): 777-796.
[32] Konhauser, K.O. Robbins, L.J Pecoits, E. Peacock, C. Kappler, A. Lalonde, S.V. (2015). The Archean nickel famine revisited. Astrobiology, 15(10):804-815.
[33] Peacock, C.L. Lalonde, S.V. and Konhauser, K.O. (2016). Iron minerals as archives of Earth's redox and biogeochemical evolution. EMU notes in Mineralogy, 17:113-164.
[34] Zhou, M.F.; et al. (2004). Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4):233-257.
[35] Tsikouras, B. Karipi, S. Grammatikopoulos, T.A. Hatzipanagiotou, K. (2006). Listwaenite evolution in the ophiolite melange of It Mountain (continental Central Greece). European Journal of Mineralogy, 18(2):243-255.
[36] Pini, G.A. (1999). Tectonosomes and olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geological Society of America: p. 73.
[37] Bettelli, G. Bonazzi, U. Fazzini, P. Gasperi, G. Gelmini, R. Panini, F. (1989). Nota illustrativa alla Carta Geologica Schematica dell'Appennino modenese e delle aree limitrofe. Memorie Della Società Geologica Italiana, 39:487-498.
[38] Mutti, E. Papani, L. Di Biase, D. Davoli, G. Mora, S. Segadelli, S. Tinterri, R. (1995). Il Bacino Terziario Epimesoalpino e le sue implicazioni sui rapporti tra Alpi ed Appennino. Memorie di Scienze Geologiche, 47:217-244.
[39] Martelli, L. Cibin, U. Di G.A Catanzariti, R. (1998). Litostratigrafia della Formazione di Ranzano (Priaboniano-Rupeliano, Appennino Settentrionale e Bacino Terziario Piemontese). Bollettino della Società geologica italiana, 117(1):151-185.
[40] Panini, F. Fioroni, C. Fregni, P. Bonacci, M. (2002). Le rocce caotiche dell’Oltrepo Pavese: Note illustrative della Carta Geologica dell’Appennino vogherese tra Borgo Priolo eRuino. Atti Ticinenesi Di Scienze Della Terra, 43:83-109.
[41] Filippo, P.; Chiara, F. and Paola, F. (2013). Le Brecce argillose di Musigliano (Appennino Vogherese – Tortonese): Dati stratigrafici preliminari Rendiconti Online Della Società Geologica Italiana, 26:21–31.
[42] Pini, G. (2004). The role of olistostromes and argille scagliose in the structural evolution of the Northern Apennines. Memorie Descrittive della Carta Geologica d’Italia, 63:1-14.
[43] Festa, A. (2011). Melanges: Processes of formation and societal significance. Geological Society of America Special Paper, 480:215-232.
[44] Festa, A. and Codegone, G. (2013). Geological map of the External Ligurian Units in western Monferrato (Tertiary Piedmont Basin, N.W. Italy). Journal of Maps, 9(1):84-97.
[45] Remitti, F. Vannucchi, P. Bettelli, G. Fantoni, L. Panini, F. Vescovi, P. (2011). Tectonic and sedimentary evolution of the frontal part of an ancient subduction complex at the transition from accretion to erosion: The case of the Ligurian wedge of the northern Apennines, Italy. Bulletin, 123(1-2):51-70.
[46] Ogata, K. Mutti, E. Pini, Gian A. Tinterri, R. (2012). Mass transport-related stratal disruption within sedimentary mélanges: examples from the
northern Apennines (Italy) and south-central Pyrenees (Spain). Tectonophysics, 568:185-199.
[47] Castellarin, A. and Pini, G.A. (1989). L'arco del Sillaro: la messa in posto delle Argille Scagliose al margine appenninico padano (Appennino bolognese). Memorie Della Società
Geologica Italiana, 39:127-142.
[48] McCall, G. and Kidd, R. (1982). The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. Geological Society, London, Special Publications, 10(1):387-397.
[49] Sengor, A. (2003). The repeated rediscovery of mélanges and its implications for the possibility and the role of objective evidence in the scientific enterprise. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA: p. 385-446.
[50] Silver, E.A. and Beutner, E.C. (1980). Melanges. Geology, 8(1):32-34.
[51] Stow, D.A. and Mayall, M. (2000). Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 2000. 17(2):125-135.
[52] Lucente, C.C. and Pini, G.A. (2003). Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the northern Apennines, Italy: A field perspective. American Journal of Science, 303(7):565-602.
[53] Lucente, C.C. and G.A. Pini, (2008). Basin‐wide mass‐wasting complexes as markers of the Oligo‐Miocene foredeep‐accretionary wedge evolution in the northern Apennines, Italy. Basin Research, 20(1):49-71.
[54] Ali, S.A.; Ismail, Sabah A.; Nutman, A.P.; Bennett, V.C.; Jones, B.G.; Buckman, S.; (2016).The intra-oceanic Cretaceous (~ 108 Ma) Kata–Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure. Lithos, 260:154-163.
[55] Medialdea, T. Vegas, R. Somoza, L. Vázquez, J.T. Maldonado, A. Dıaz-del-R.V. Maestro, A. Córdoba, D. Fernández-P.M (2004). Structure and evolution of the “Olistostrome” complex of the Gibraltar Arc in the Gulf of Cádiz (eastern Central Atlantic): evidence from two long seismic cross-sections. Marine Geology, 209(1-4):173-198.
[56] Ali, S.A. Nutman, A.P. Aswad, K.J. Jones, Brian G. (2019). Overview of the tectonic evolution of the Iraqi Zagros thrust zone: Sixty million years of Neotethyan ocean subduction. Journal of Geodynamics, 129:162-177.
[57] Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4):211-238.
[58] Davis, J.C. and Sampson, R.J. (1986). Statistics and data analysis in geology. Wiley New York: 646.
[59] Sazonov, V. (1975). Listvenitization and mineralization.Moscow Nauka, 30:303-313.
[60] Halls, C. and Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3):303-313.
[61] Uįurum, A. (2000). Listwaenites in Turkey: perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia. Ofioliti, 25(1):15-29.
[62] Zhou, M.F. Robinson, P.T. Malpas, J. Li, Z. (1996). Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1):3-21.
[63] Cloos, E. and Pettijohn, F. (1973). Southern Border of the Triassic Basin, West of York, Pennsylvania: Fault or Overlap? Geological Society of America Bulletin, 84(2):523-536.
[64] Tucker, M.E. (1991). Sequence stratigraphy of carbonate-evaporite basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Journal of the Geological Society, 148(6):1019-1036.
[65] Galloway, W.E. and Hobday, D.K. (1996). Fuel-mineral resource base, in Terrigenous Clastic Depositional Systems, Springer: p. 1-5.
[66] Cronin, B.T. Çelik, H. Hurst, A. Turkmen, I. (2005). Mud prone entrenched deep-water slope channel complexes from the Eocene of eastern Turkey. Geological Society, London, Special Publications, 244(1):155-180.
[67] Einsele, G. (1991). Submarine mass flow deposits and turbidites. Cycles and events in stratigraphy: p. 313-339.
[68] Collinson, J. (1996). Alluvial sediments. Sedimentary environments: processes, facies, and stratigraphy. Blackwell Scientific Publications: p. 37-82.
[69] Suciu, T. Pleş, G. Tămaş, T. Bucur, I. Săsăran, E. Cociuba, I. (2021). New insights into the depositional environment and stratigraphic position of the Gugu Breccia (Pădurea Craiului Mountains, Romania). Carnets Geol, 21(11):215.
[70] Săsăran, E. (2006). Calcarele jurasicului superior: cretacicului inferior din Munţii Trascău. Presa Univ: p.5-11.
[71] Flügel, E. and Munnecke, A. (2010). Microfacies of carbonate rocks: analysis, interpretation and application. Springer: p. 575-586.
[72] Săsăran, E. Bucur, I. Mircescu, C.V. Ungur, C.G. (2017). Microfacies analysis and depositional environments of the Tithonian-Valanginian limestones from Dâmbovicioara Gorges (Cheile Dâmbovicioarei), Getic Carbonate Platform, Romania. Acta Palaeontologica Romaniae, 3(1):25-48.
[73] Mohammad, Y.O. (2011). Serpentinites and their tectonic signature along the Northwest Zagros Thrust zone, Kurdistan region, Iraq. Arabian Journal of Geosciences, 4(1):69-83.
[74] Aziz, N.R.; Aswad, K.J. and Koyi, H.A. (2011). Contrasting settings of serpentinite bodies in the
northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148(5-6):819-837. [75] Allen, D. E. and Seyfried Jr, W. E. (2004). Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6):1347-1354
[76] Nimis, P., Zaykov, V.V.; Omenetto, P.; Melekestseva, I.Y.; Tesalina, S.G.; Orgeval, J.J.; (2008). Peculiarities of some mafic–ultramafic-and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals. Ore Geology Reviews, 33(1):49-69.
[77] Chi Fru, E. Kilias, S.I varsson, M. Rattray, J.E. Gkika, K. (2018). Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece. Solid Earth, 9(3):573-598.
[78] Dalla Torre, M.; Mählmann, R.F. and Ernst, W. (1997). Experimental study on the pressure dependence of vitrinite maturation. Geochimica et Cosmochimica Acta, 61(14):2921-2928.
[79] Judik, K. Rantitsch, G. Rainer, T.M. Árkai, P. Tomljenović, B. (2008). Alpine metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia). Swiss Journal of Geosciences, 101(3):605-616.
[80] Dunkl, I. Antolín, B. Wemmer, K. Rantitsch, G. Kienast, M. Montomoli, C. Ding, L. Carosi, R. Appel, E. El Bay, R. (2011). Metamorphic evolution of the Tethyan Himalayan flysch in SE Tibet. Geological Society, London, Special Publications, 353(1):45-69.
[81] Matava, T.; Matt, V. and Flannery, J. (2019). New insights on measured and calculated vitrinite reflectance. Basin Research, 31(2):213-227.
[82] Flores, G., 1955. Les résultats des études pour les recherches pétroliféres en Sicile:
Discussion. Proceedings of the 4th World Petroleum Congress. Casa Editrice Carlo
Colombo, Rome, pp. 121–122 (Section 1/A/2).
[83] Ayupova, N.R., Maslennikov, V.V., 2013. Biomorphic textures in the ferruginous-siliceous rocks of massive sulfide-bearing paleohydrothermal fields in the urals. Lithol. Miner. Resour. 48, 438–455.