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1. Introduction

Generalized differential equations (GDEs) are
equations in which fractional order derivatives
replace integral order derivatives.  Ordinary
differential equations (ODEs) are a type of
differential equation used to describe dynamic events
in physics, biology, and chemistry, among other
fields. On the other hand, some complicated systems
cannot be solved by simple differential equations. As
a result, condition models are improved using FDEs
instead of integer order FDEs, [1, 2, 3] are examples
of this. FDEs, on the other hand, are too challenging
to study using analytical methods, and there is no
theoretical foundation for this subject,
Mathematicians have recently found new numerical
solution methods as a result of all this. FDEs can be
solved using fractional order differential equations in
a range of domains, including engineering, chemistry,
and physics [4]. A simple method must be used to
solve some equations. Many known models are
defined as none (fractional) order derivatives in

Caputo
expansion,
derivative,

ABSTRACT

In this paper, constructed a fractional polynomial spline to

compute the solution of FDEs; the spline interpolation with
fractional polynomial coefficients must be constructed using
the Caputo fractional derivative. For the provided spline
function, error bounds were studied and a stability analysis
was completed. To consider the numerical explanation for the
provided method and compared, three examples were studied.
The fractional spline function, which interpolates data,
appears to be useful and accurate in solving unique problems,
according to the research.

diffusion processes, viscoelasticity, electrochemistry,
and other fields. Some numerical algorithms for
solving various derivatives of fractional order
problems are [5] and [6]. One of the most useful
techniques for the numerical approximation of
functions is fractional order spline functions.
According to the researchers, other difficult [6] and
[7] problems should be replaced by new work and
projects. On one hand, there is a great method for the
numerical approximation of functions using spline
functions. Researchers, on the other hand, can come
up with some new, exciting, and difficult problems to
solve [7]. For example [2], Spline lacunary
interpolation develops when a related problem
involving a function and its derivative [7, 8] and [9,
10] arises. Spline interpolation, also known as
fractional spline interpolation, is discussed in this
paper, as well as error estimation and convergence
analysis for the fractional spline function. To find a

7
new form of class Cz- An approximation method
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using the lacunary spline is built and applied to a
numerical solution to a fractional initial value
problem. The current article can be considered to
repeat the formulated spline polynomial in the first
section, the error estimations in the second section,
and stability and convergence analysis in the third
section. The fourth section, which presents the
collations of our numerical results with exact
solutions, has been studied. This section compared
and shows the results and conclusions of the study,
See [11, 13].

2. Mathematical
Definitions

This section will go over the many definitions of the
fractional derivative as well as Taylor's Theorem,
which we used in our work. To define, different
methods are used. The most common fractional
derivatives are the Riemann-Liouville and Caputo
derivatives.

Definition 2.1: [12] (Caputo Fractional Derivative)
The Caputo derivative operator of order « is defined
as:

EDEF(D) = )
toy_ —a-1(4 —
r(n-a) fa t—w)* (du) fdu,n =
[a]landa > 0.
For a = 0, we introduce the notation:
“DEf(t) = Df(¢)
Definition 2.2: [12] (Fractional Derivative of Order)

The Riemann-Liouville derivative of order a can be
defined as:

WDEF(O) = s () [ (¢ = e fadu
For everya, and n = [a]

Definition 2.3:[11]  Suppose that DZ*G(x) €
Cla,b] for z=10,1,..,n+ 1 and 0 <A <1 then we
have the Taylor series expansion about x = t

(n+1)A
_yn @D g ("))
9() = Zk=o r(k)L+1)D 9+ T((n+1)A+1) ¢

for all x € [a, b] where DZ* = D} - D} ... D} (z times ).
3. Theoretical of the Spline Method
Construct the approximate solution of FDEs in this
part to use a spline function with fractional
polynomial coefficients. Stability and error bounds
should be considered in relation to the following
theorems.
Theorem 3.1:
There exist a unique spline S(x) € S () - given the

2

Preliminaries and Basic

)V witha < & < x,

X =T

3 1
real numbers D(E)sj,j =0,1,..,N, so,D(E)s0 and Ds,

Such that:

)=

D(l/z)s(xj) = y(E) D(l/z)s(xj+1) y](+)1
( )

D(3/2)s(xj+1) y]+1 ...(1)

D@Ws(x;) = DWf(x;) , where = 0,1, ...,n

.a
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Consider the spline method in [10], when we created
and introduced a new boundary condition for the

spline function s(x) € S (n, 9 in the interval (0,1].

s(x) = A(x)S; + (x — xl-)% [B(x)Si(%) + C(x)Si(%)l] +

D(x)(x —x)'S{ + (x — xi)g [ E(x)Sl.(%) +
F(x)SHl] + G0 (x —x)2SZ) ..(2)

We get the following by using all of the conditions in
equation (1) and simplified them.
Alx) =1

1
2x2
B(x) = —am + (
15-13/2) —60-7(1/2)

42m— 128( ; "
45-m\2/-120-1T\2
€t =( 42m—128
—15.73/2) 4 60.7(1/2)
42m-128
D(x) =x+(
157—60
G’

4-x2
EC) = am

—16'71'(5) )x% n (

(1057'[—320
F( _ —45-n(%)+96~n %)
x) = ( 84256
15.73/2) _go.7r(1/2) 3
84m—-256

167(2)

21m—64

—45- 11:(3)+120 11:(1)
42m—128
3

5
)x2 +

)x% + (

—16-1{(%) E

( 21m—64 )xz +

)x? +

—45m+120
21m—-64

...(3)

3 1
—45-n(7)+144-n(i)
+(
84T—256
15-7(3/2) —40.7(1/2)
84m—-256

)x? +

Yx? + ( )xg +

21m—64

)x? +
3

96-71(%)

105m—-320

(2T e+

5
256x2 5mx

G(x) 21m—64 3157_{—960 4-211—_128
Evaluating the step size of equation (3), xj,; = x; +

kAR,0 <k <1, with s(x) in [xj_y,x]. Since
7
s(x) € Cz, and the fractional continuity equations.
5 5
s(x*) =s(x”) to D(E)s(x]-“L) = D(E)s(xj‘)
respectively, for j=0,1,2,..,N, leads to the
equations in the following linear system:

33 33 33
=[1- hz/lzﬁ — hzAz6 — hz/lzs] Sioi +

[hza + hzﬁ] $2 + [”"““y] s
4h2[3’+6h2£+3\/—h2

3

1@

[ 3(33 ]5 ..(4) 1

s el il b
1 1

hy1 2h%e1 +Vmh2{4] o (2)

[ ]u [ lsh o

hS'—

|

33 33 33 3 3
VIhZ A2B,+ VTTth2 A28, +Vmh2 A2e,—2y, h2 A2 S _
Vz\/E i—-1

...(6)

1 1 1

hZ ay+h2f, S(g) _ [Zhﬁz]s, _
V2 i-1 yovml 1

4h?% By +6h?e5+3VTh?{,—3VTh?y,

s

i-1

[ ]

y2Vm
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33 33 33
20(2) _ |n222B4+ h2 226,402 A2¢,
h=§;7 = [ 2 Siq —

[h; a4+h;ﬁ4] S(%) _ [2h54+ﬁhy4] s
- - — - = |Qi-1

Ca i-1 laVm
4h2B4+6h%es] (2)
[7%@ s@ @

The theorem's proof is now complete.

Hint: Using the above theorem, we can show that the
spline method's model exists and is unique, since it’s
easily to show that algebraically, after change to
linear system. However, the following theorems can
be used to show that the spline method construction's
convergence analysis is correct.

Theorem 3.2: Let f € C*[0, h] be the exact function,
and s(x) be a single fractional polynomial that exists

for all t=%,§,§ for all points in [a, b], and that
matches f(x) and its first n-1 derivatives f™at 0 and
h. Then
5O~ FO@] <
Where
le®] = |fOx) —SO(x)| and a be a constant,

K = maxo<y<p |f(2m)(x)|
Proof:

—rel

(2m 2)!

1
Since Dzs(x) is Hermite interpolation polynomial of

1 3
degree 3, and matching Dz2f(x),Dzf(x),at x =
xj,%j41 S0 for any x € [x;, x4, using [15, 16], and
let

m=2,g=f()and D3 —s()(x) we get:
|s(%) —f(%) <—
D%f(x) and P; = D%s(x) we get

|s(%) - f(z) n D then we can get |s(x)—

s(0) + £(0) - f(x)|<—||f(‘*)||
Since s(0) = f(0) and x € [0, 1] then the last

also if we put g=

equation becomes |s(§) —f(g) s; I F@ 0 and

since f®(0)=0,p=1,2, [19] we have the
following:

|s(%) —f@)| < hz_f (WA
0 £0)

7

5 5 nz
|s@) —f @ <2y oy
4 Stability Analysis
In this section, we'll look at the stability analysis of
the proposed spline method. Equations (4), (5), (6),
and (7) are considered for evaluating the equation's
stability and providing a method to test it, using
fractional differential equations, and is dedicated to
the stability of the linear system by removing the
effects of errors.

3 3
D(?y((ﬁg) = —22y(x),1 € R, y(x) = ¥0,¥'(x0) =
y' .. (8

R @
<ZNfF@

TJPS

33 33 33
=[1- hz/lzﬁ — h2Az68 — hz/lze] Siei +

[hza + hzﬂ] s+ [2"‘”””] s
[4h2ﬁ+6h25+3fh2§]s(2)

3\/E -1
3 3
h%S.(%) _ h3 A28,4+ WA2es S W ar S()
t B1 B1
[hy1 [2h2£1+x/—h2€1]5.(2)
\/_31 -1
h'S; =
3 3
J_hz 12ﬁ2+\/—h2/1252+x/—h2 )1252 2y,h2 A2
Si—1—
Vz\/—
1 17 1
h2 a,+h2f, S(E) _ I:Zhﬁz:I _
Y2 i-1 YoV
[4h2ﬁ2+6h2 £04+3VThZ{,— 3\/—h2y2] S(z)
Yz\/_ i—-1 ;
33 33 33
thi(z) _ hZ A2B,+ h2;264+h2 /1254] S,
4
1 19 4
hZ a4 +h2p, S(;) _ [2h,84+\/ﬁhy4]s, _
Ca i-1 {aVm -1
[4h234+6h2.£4 @
3¢uVm =1

This linear system can be written as follows:
Si=DSi_1,j=1,..,N ,

[ Sj Sj-1
@)s, 3)s;
where, S; = Ds; ,Sj1 = DY/sj1 ,and
| DS] | | DSJ‘_]_ |
lD(Z)S]J lD(Z)Sj_lj
We get the following matrix
Ay a; A as
r=|P0 D b2 b ...(9)
Co € C C3
dy dy d, ds
Where:
33 33 33
ag = [1 — h2A2f3 — h2126 — hZAze] , a; =

|n2a + h2p] ,a; = |21 ang
ag = [4h2ﬁ+6hzs+3rh2 ]

1
bO — [hz ).2614' hzlzfl] ,bl - _ [hz al] l bz - _ [m]

B1 p1 P1
2h%e; +Vmh? gy
o, = - [
3 Vi s
\/—h2/1262+\/_h2 )1262+\/—h2/1252 —2y,hz A2
YU
1
_ h2z a2+h2ﬁz _ [Zhﬁz]
== |—2—% ¢, = — and
1 [ Y2 ] 2 YoV
_ [4h2ﬁ2+6h252+3ﬁh2{2—3ﬁh2y2]
€= vV
3 3 3 3 3 3 1 1
hz ).Eﬁ4+ hz 12641'}17 1784 hz d4+hiﬁ4
dy = . dy=—
[ [
2hﬁ4+\/—h]/4
d, = [ ] and
2 {aVm
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4h%B4+6h%¢,
ds = _[ 304V
Theorem 4.1: Equations (9) by using fractional
spline method is stable.
Proof: Assume T is a complex conjugate matrix and
that |A;| < 1 is true. The characteristic equation will
be stable as the characteristic polynomial [17] if all
complex eigenvalues have negative real components.
Theorem 4.2: The matrix (I — T) is invertible if T is
a nxn Matrix withl T ll,<1 in addition to
- 1
Iz =n7, < 1-ITleo’
Proof: see [18].
Theorem 4.3: T is non-singular if it has n
independent columns, T~!exists, and Tu = f has a
unique solution u.
Proof: Since we have a matrix T from the linear
system of equation (10), if |T| # 0, then T~ exists,
and the system is unique using the [17].
Theorem 4.4: Convergence is a necessary and
sufficient condition if the eigenvalues satisfy the
matrix T.
Proof: Assume that all the eigenvalues of T are
unique, and that (theorem 3.1 [18]) the spectral radius

of the matrix T is less than one. |ﬂi| <1, then the
matrix T is converges.

TJPS

5. Numerical illustrations

In the three numerical examples in this section, the
method is used to complete all computations. Three
fractional initial value problems are considered to

7
define the class Cz of fractional interpolation spline
and to test the computational applicability of the
provided method. The application of the results in
two parts shows the value of the proposed technique.
Tables 1, 2 and 3 are given below.
1
The term e,e(E) and e™ represent the maximum
magnitude errors

()] = IsG) ~ yl, [pGe()| = [pCsx) -

1
pBy| . ad  e@I=15'6)~y ()
respectively.
Example 1: [13] Consider the fractional differential
equation

, o _ 4 3—a
D>y () +2Dy(6) + y(t) = 2t + =77 +

§t3, 0 < a <1, subject to y(0) =y'(0) =0. it is
easily verified that the exact solution to this problem
isy(x) = §t3

Table 1: Absolute error of S(x) and its derivative of example 1

h Is(x) — f(x)] S(%) _ f(%) Is" — '] Exact solution | Approximation solution
0.001 | 2.1465 x 107! | 6.5181 x 1078 | 2.6172 x 107! | 3.3333 x 1071° 3.5479 x 10710

0.05 1.6201 x 10~° | 2.9130 x 10™* | 1.4913 x 107! | 4.1666 x 107> 5.7867 x 105

0.02 7.4044 X 1077 | 2.2475 x 107 | 2.1817 x 107! | 2.6666 x 10~° 3.4071 x 10~

0.1 1.2287 x 10™* | 5.7175 x 1073 | 3.4151 x 1072 | 3.3333 x 10™* 45620 x 10~*

Table 2: In comparison to the method of [13], the Example 2: [11] Consider the boundary value

absolute error in Example 1 is shown.

problem for the fractional differential equation

h Our method Ref[ 13] @ () + 0.05D%y(t) = g(t), t € (0.1 0) =

0.001 | 2.1465x 10711 54910 x 10~° L)+ @ ¥ g((z))' - OO

0.01 6.7043 x 108 5.4910 x 10~° 0.y(1) = 0.y (0) =0,y"(1) =8

o1 19287 < 107 52910 x 102 With exact soélutlon y(t) =1§ —t*. Here,g(t) =

120t — 24 + 57 — =@
re—a) ris—a)
Table 3: Absolute error of S(x) and its derivative of example 2

h |s(x) — f(x)] |S(%) _ f(%) [s" = f'l Exact solution Approximation solution
0.001 | 1.3307 x 10716 | 3.3889 x 107%° | 1.5677 x 1073 | —9.99 x 10713 —9,9886 x 10713
0.05 9.4574 x 1077 | 2.6324 x 107> | 4.0790 x 1072 | —5.9375 x 10°° —4,9917 x 107°
0.02 43991 x 107° | 2.9125x 107 | 2.5292 x 1072 | —1.568 x 1077 —1.5240 x 1077
0.1 54190 x 1075 | 1.0408 x 10™3 | 1.5526 x 1072 -9 x107° —3.5809 x 10~°

Table 4: In comparison to the method of [11], the
absolute error in Example 2 is shown.

h Our method Ref[ 11]

0.001 1.3307 x 10716 3.2163 x 10713
0.02 43991 x 10~° 6.3200 x 1078
0.01 7.6759 x 10711 1.7824 x 10710

Example 3: [20] Consider the fraction boundary value
problem:

1 24
5V () + 5z DDy () +y(x)
4
=x(x?+ 1)+ —=x%/x

N
y(0) = 0,y(0.5) = 0.125, the

exact solution of
equation is y(x) = x3
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Table 5: Absolute error of S(x) and its derivative of example 3

TJPS

h Is(x) — f(x)] |S(%) _ f(%) Is" = f'| Exact solution | Approximation solution
0.001 | 6.4395 x 10711 | 1.9554 x 1077 | 7.8516 x 107! 1x107° 1.0643 x 107°
0.05 48603 x 107> | 8.7392 x 10™* | 4.4741 x 107! | 1.2500 x 10~* 1.7360 x 107
0.02 2.2213x107° | 6.7427 x 107® | 6.5451 x 107! 8x10°° 1.0221 x 1075
0.1 3.6861 x 10~ | 1.7152 x 1072 | 1.0245 x 107! 1x 1073 1.3686 x 1073
0.050 ”,4’__,- 0.050 ",a/_.l
0045 ’,,:;::1:: - 004s ez -
0040 J,{Z;::: - 0.040 /,ulj.’-f‘:'
0035 _,;:f’:" 0035 _,;:5::‘
0030 ,9)':" 0030 ,:,1."' .
0025 2 0025 ,:":’
0020 s ooz0 .,"/
0015 ! 0015 .':'
] - ] -m- roximation{h=0.01
oano] & e oo 4 < cacncom
6 i i i ‘5 0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 000012 0.00014

le-5
Fig. 1: For example 1, comparing the solution obtained
by the spline method with the exact solution of h=0.01

00050 { ®Wa__
00045 Tl
0.0040 i O
S
-
00035 ~a.
.
00030 “n
\
\
00025 \
\
\
\
00020 .
v
00015 |
=m- Approximation(h=0.001)
0.0010 -®- Exact(h=0.001)

% Y 3 3 2 a 0
1e-10

Fig. 2: For example 2, comparing the solution obtained
by the spline method with the exact solution of h=0.001
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