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ABSTRACT 

In this paper we study the strongly 𝝅- regular ring (for short   

st. 𝝅-reg. rg.) and some properties also give some new results 

of st.  𝜋-reg. rg. and its connection with other rings. 

1.  Introduction 
Let R be a ring we study concept of st. 𝝅-reg. ring., 

which introduced 1954 by Azumaya [2], and we give 

background theorems and corollary which we need in 

this paper also give some new results of  st.  𝜋-reg. 

rg. and its connection with other rg.s. An element 

𝑎 ∈  ℛ is called regular element if there exists some 

𝑏 ∈  ℛ such that 𝑎𝑏𝑎 = 𝑎. A ring is called regular 

ring if every element is regular. 

2. Strongly 𝝅-reg. ring. 
Definition 2.1 [2]:  

we call 𝑎 st. 𝜋 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 if it is both right 𝜋 −
𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and left 𝜋 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟.  

Now it can readily be seen that a power 𝑎𝑛 of 𝑎 is 

right (or left) reg. iff here exists an element 𝑏 of s.t. 

𝑎𝑛+1𝑏 = 𝑎𝑛 (𝑜𝑟 𝑏𝑎𝑛+1 = 𝑎𝑛), where  

 a, b ∈R.  

Theorem 2.2 [2]: 

 Under the assumption that  ℛ  is of bounded index, 

the following four conditions are equivalent to ∀ 

other: 

(1)  ℛ π-reg., 

(2) ℛ is right .π-reg., 

(3) ℛ is left π-reg., 

(4) ℛ is st. π-reg.. 

 

Lemma 2.3 :  

Let 𝑏, 𝑐 satisfy 𝑎𝑛+1𝑏 = 𝑎𝑛 , 𝑐𝑎𝑚+1 = 𝑎𝑚 for some 

𝑛, 𝑚 ∈  𝑍. Then they satisfy 𝑎𝑚+1𝑏 = 𝑎𝑚 , 𝑐𝑎𝑛+1 =
𝑎𝑛 too.

 

Proof:  When 𝑚 ≥ 𝑛 𝑎𝑚+1 = 𝑎𝑚 follows 

immediately from 𝑎𝑛+1𝑏 = 𝑎𝑛 . Suppose now 𝑚 < 𝑛. 
Then 𝑎𝑚 = 𝑐𝑎𝑚+1 implies  

𝑎𝑚(= 𝑐2𝑎𝑚+2 = ⋯ ) = 𝑐𝑛−𝑚𝑎𝑛 , and so we obtain  

𝑎𝑚+1𝑏 = 𝑐𝑛−𝑚𝑎𝑛+1𝑏 = 𝑐𝑛−𝑚𝑎𝑛 = 𝑎𝑚 .  
Similarly , we can verify the validity of 𝑐𝑎𝑛+1 = 𝑎𝑛.             

∎ 

Proposition 2.4[2] : 

Every St. 𝜋-reg. element is 𝜋-reg..  

 Proposition 2.5 [5]:  

Let ℛ be a st. 𝜋-reg. ring. Then for all 𝑎 ∈ ℛ, there 

exists a positive integer n s.t. 𝑎𝑛 = 𝑒𝑢 = 𝑢𝑒 for some 

𝑒 ∈ 𝐼𝑑(ℛ) an𝑑 some 𝑢 ∈ 𝑈(ℛ), where  𝐼𝑑(ℛ) and 

𝑈(ℛ) denote the set of idempotent of ℛ and the set of 

units of ℛ, respectively. 

Definition 2.6 [8]: 

A central idempotent in A is an idempotent in the 

central of A. 
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Theorem 2.7 [5]:  

 Let ℛ be a rg. with central idempotent. Then ℛ is st. 

𝜋-reg. iff 𝑁(ℛ) = 𝐽(ℛ) and ℛ 𝑁(ℛ)⁄  is reg., where 

𝑁(ℛ), 𝐽(R) denoted the set of all nilpotent and the 

Jacobson of ℛ respectively. 

Definition 2.8 [1]: 

 A ring ℛ is called an exchange ring if for every 

𝑎 ∈  ℛ, there exists 𝑒 ∈  𝐼𝑑(ℛ) such that 𝑒 ∈  𝑎ℛ 

and 1 −  𝑒 ∈  (1 −  𝑎)ℛ. (𝐼𝑑(ℛ) meanls the set of 

all idempotent in ℛ). 

Remark 2.9 [1]:  

 Every st. 𝜋-reg. rg. is an exchange rg.. 

Theorem 2. 10[1]:   

Let ℛ be an exchange ring and let a be a reg. element 

of is st. π-reg., then a is unit-reg element of A.. 

  Definition 2.11 [4]: 

 Let 𝐼 be an ideal of a  𝑟𝑖𝑛𝑔 ℛ. We say that 𝐼 is a st. 

𝜋-reg.  ideal of ℛ in case for any 𝑎 ∈ 𝐼 if there exist  

𝑛 ∈ 𝑁 and 𝑏 ∈ 𝐼 s.t.  

𝑎𝑛 = 𝑎𝑛+1𝑏.  

Theorem 2.12 [4]:  

Let 𝐼 be an ideal of a rg. ℛ. Then the following are 

equivalent: 

(1) 𝐼 is st. 𝜋-reg.. 

(2) Every element in 𝐼 is st. 𝜋-reg. element. 

Proposition 2.13 [6]:  

Every right (or left) 𝜋-reg. rg. ℛ is st. 𝜋-reg.. 

 Remark 2.14:   
The factor ring of the integers with respect to the 

ideal generated by the integer 4 is a st. 𝜋-reg. rg. 

which is not a reg. rg.. 

Theorem 2.15 [7]: 

 Let ℛ be a rg. and 𝐼 an ideal of ℛ. 

(1)If ℛ is a st. 𝜋-reg. rg. then so is ℛ
𝐼⁄  is st. 𝜋 −

𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑟𝑖𝑛𝑔. 
(2)Assume that 𝐼 is a reg. ideal of ℛ. Then , ℛ is a st. 

𝜋-reg. rg. Iffso is ℛ 𝐼⁄ .  

Proposition 2.16 [7]:  

 Let ℛ be a rg. and 𝑃 be a prime ideal of ℛ. If 𝑅 ∕ 𝑝 is 

st. 𝜋-reg., then so is ℛ𝑃. 

Definition 2.17: 

 Let ℛ be a rg. and let 𝑎 ∈ ℛ, the element 𝑎 is called 

w-idempotent  if for some positive integer n, 𝑎𝑛 is an 

idempotent, i.e. (a
n
)

2
=a

n
. 

 Remark: The property that 𝑎 is an w-idempotent is 

equivalent to the property that ∃distinct positive 

integer 𝑛, 𝑚 s.t. 𝑎𝑛 = 𝑎𝑚. 
On the other hand if there exists positive integer 𝑛, 𝑚 

with 𝑛 > 𝑚 with  𝑎𝑛 = 𝑎𝑚 . Then there is some 𝑡 > 0 

s.t. 𝑡(𝑛 − 𝑚) > m. 
Let 𝑘 = 𝑡(𝑛 − 𝑚) = 𝑚 and let 𝑓 = 𝑎𝑚+𝑘=𝑎𝑡(𝑛−𝑚) 

then  

𝑎𝑚 = 𝑎𝑛 = 𝑎𝑚 ∙ 𝑎𝑛𝑎−𝑚 = 𝑎𝑚𝑎𝑡(𝑛−𝑚)  

Thus 

𝑓 = 𝑎𝑡(𝑛−𝑚)=a𝒎+𝒌 = 𝑎𝑘 ∙ 𝑎𝑚 = 𝑎𝑘𝑎𝑚𝑎𝑡(𝑛−𝑚) =
𝑎𝑘𝑎𝑚𝑎𝑘+𝑚 = 𝑓2 

∴ 𝑎 is w-idempotent. 

Theorem 2.18:  

Let a be a st. reg. element of a ring R. There exists 

one and only one element 𝑐 s.t. 𝑎𝑐 = 𝑐𝑎, 𝑎2𝑐 =
(𝑐𝑎2) = 𝑎 and 𝑎𝑐2(= 𝑐2𝑎) = 𝑐, and in particular a is 

reg. element. For any element 𝑏 s.t. 𝑎2𝑏 = 𝑎, 𝑐 

coincides with 𝑎𝑏2. Moreover, c commutes with 

every element which is commutative with a. 

Proof:  Let 𝑏, 𝑑 be two elements s.t. 𝑎2𝑏 = 𝑎, 𝑑𝑎2 =
𝑎. Then  

(1) 𝑎𝑏 = 𝑏𝑎2𝑏 = 𝑑𝑎, 
So that  

(2) 𝑎𝑏2 = 𝑑𝑎𝑏 = 𝑑2𝑎. 
From (1) we have also  

(3) 𝑎𝑏𝑎 = 𝑑𝑎2 = 𝑎 = 𝑎2𝑏 = 𝑎𝑑𝑎. 
Now put  𝑐 = 𝑎𝑏2. It follows then from (1), (2), (3), 

that  

𝑎𝑐 = 𝑎𝑑𝑎𝑏 = 𝑎𝑏 = 𝑑𝑎 𝑑𝑎𝑏𝑎 = 𝑐𝑎, 𝑎2𝑐 = 𝑎𝑐𝑎 =
𝑎𝑏𝑎 = 𝑎,   
𝑎𝑐2 = 𝑑𝑎𝑐 = 𝑑𝑎𝑏 = 𝑐,   as desired . 

Suppose next 𝑐′ be any element which satisfies the 

same equalities as 𝑐: 𝑎𝑐′ = 𝑐′𝑎, 𝑎2𝑐′ = 𝑎, 𝑎2𝑐′ = 𝑐′. 
Then, be replacing 𝑏, 𝑑 in (2) by 𝑐, 𝑐′ respectively , 

we get 𝑐 = 𝑎𝑐2 = 𝑐′2𝑎 = 𝑐′, showing the uniqueness 

of c. 

For the proof of the last assertion, let z be any 

element s.t. 𝑎𝑧 = 𝑧𝑎. Then we have first 𝑐𝑎𝑧 =
𝑐𝑧𝑎 = 𝑐𝑧𝑎2𝑐 = 𝑐𝑎2𝑧𝑐 = 𝑎𝑧𝑐 = 𝑧𝑎𝑐,  i.e., z 

commutes with 𝑐𝑎 = 𝑎𝑐. It follows from this now 

𝑐𝑧 = 𝑐2𝑎𝑧 = 𝑐𝑧𝑐𝑎 = 𝑐𝑎𝑧𝑐 = 𝑧𝑐𝑎𝑐 = 𝑧𝑐, and this 

completes the proof.                   ∎  

corollary 2.19[2] :  

 Let 𝑎  be a st. 𝜋 −reg. element of A. Suppose that 𝑎𝑛 

is right reg.. Then 𝑎𝑛 is in fact st. reg., and moreover 

there exists an element 𝑐 s.t. 𝑎𝑐 = 𝑐𝑎 and 𝑎𝑛+1𝑐 =
𝑎𝑛 . 
Corollary 2.20 [3]:  

 L et ℛ be a st. 𝜋-reg. rg. and s∈ ℛ. Then ∃ 𝑛 ≥ 1and 

𝑎 ∈ ℛ s.t. 𝑠𝑛 = 𝑠2𝑛𝑎, 𝑠𝑎 = 𝑎𝑠 and 𝑎2𝑠𝑛 = 𝑎 . 

Theorem 2.21 :   

 Let ℛ be a rg. and {Si}𝒊∈𝑰 a collection of st. 𝜋-reg. 

subrg.s. Then 𝑠𝑖i∈I
∩  is st. 𝜋-reg.. 

Proof:   Let ∈ 𝑆 . U sing one of the S𝒊 we can find 

𝑛 ≥ 1 and 𝑎 ∈ 𝑆𝑗 s.t. 

𝑠𝑛 = 𝑠2𝑛𝑎, 𝑠𝑎 = 𝑎𝑠 𝑎𝑛𝑑  𝑎2𝑠𝑛 = 𝑎. Now consider 𝑆𝑖 

For some 𝑚 ≥ 1 and 𝑏 ∈ 𝑆𝑗 there is a solution for 

snm = 𝑠2𝑚𝑛𝑏, 𝑠𝑛𝑚𝑏 = 𝑏𝑠𝑛𝑚, 𝑏2𝑠𝑛𝑚 = 𝑏. Further  

𝑠𝑛𝑚 = 𝑠2𝑛𝑚𝑎𝑚, 𝑠𝑛𝑚𝑎 = 𝑎𝑠𝑛𝑚  𝑎𝑛𝑑 𝑎2𝑚𝑠𝑛𝑚 = 𝑎𝑚. 

By corollary 2.26, 𝑏 = 𝑎𝑚 ∈ 𝑆𝑗. From 𝑎 = 𝑎2𝑠𝑛 it 

follows that 𝑎 = 𝑎𝑚𝑠(𝑚−1)𝑛 ∈ 𝑆𝑗  if 𝑚 ≥ 1. If 𝑚 = 1, 

𝑏 = −𝑎 already. In any case 𝑎 ∈ 𝑆𝑗.            ∎ 

Lemma 2.22 [2]:   

Let a be a st. 𝜋-reg. element of index n, and 𝑐 an 

element s.t. 𝑎𝑐 = 𝑐𝑎 and 𝑎𝑛+1𝑐 = 𝑎𝑛(as in corollary 

2.19. Then 𝑎 − 𝑎2𝑐 is a nilpotent element of index n. 

We now obtain from corollary (2.19) and lemma 

(2.22), immediately the following.            

Theorem 2.23:  

 Let ℛ be a ring and let 𝑎 ∈ ℛ be a st. 𝜋-reg. element. 

Then there exists elements 𝑢 ∈ ℛ and ℎ ∈ ℛ s.t. 
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1. 𝑢 is invertible.      2.   𝑢ℎ = ℎ𝑢 = 𝑎         3.   ℎ is 

w-idempotent. 

Proof: ← By corollary (2.19), ∃ 𝑐 ∈  ℛ and 𝑛 ∈  ℛ 

s.t. 𝑎𝑛+1𝑐 = 𝑎𝑛 and 𝑐𝑎 = 𝑎𝑐. Then we have  

𝑎𝑛 = 𝑎𝑛+1𝑐 = 𝑎𝑛+2𝑎2 = ⋯ = 𝑎2𝑛𝑐𝑛 = 𝑎𝑛𝑐𝑛𝑎𝑛 .  
Let 𝑤 = 𝑎𝑛𝑐𝑛 . 
Then  𝑤2 = 𝑤 and the elements  𝑎 , 𝑐 and w commute 

with ∀ other. 

We also have 𝑎𝑐𝑤 = 𝑎𝑐(𝑎𝑛𝑐𝑛) = (𝑎𝑛+1𝑐)𝑐𝑛 =
𝑎𝑛𝑐𝑛 = 𝑤 

and 𝑎𝑛𝑤 = 𝑎𝑛𝑐𝑛𝑎𝑛 = 𝑎𝑛 . 
Let 𝑢 = 𝑎𝑤 + (1 − 𝑤) 

and ℎ = 𝑤 + 𝑎(1 − 𝑤) then 𝑢ℎ = ℎ𝑢. 

And 𝑢ℎ = [𝑎𝑤 + (1 − 𝑤)][𝑤 + 𝑎(1 − 𝑤)] = 𝑎𝑤2 +
𝑎(1 − 𝑤)2 = 𝑎𝑤 + 𝑎 − 𝑎𝑤 = 𝑎. 
Also ℎ𝑛 = [𝑤 + 𝑎(1 − 𝑤)]𝑛 = 𝑤𝑛 + 𝑎𝑛(1 − 𝑤)𝑛 

= 𝑤 + 𝑎𝑛(1 − 𝑤) = 𝑤 + 𝑎𝑛 − 𝑎𝑛𝑤 = 𝑤.  
Thus 𝑔 is an w-idempotent. 

Finally ; let 𝑧 = [𝑐𝑤 + (1 − 𝑤)] then 𝑧𝑢 = 𝑢𝑧 and  

𝑢𝑧 = [𝑎𝑤 + (1 − 𝑤)][𝑐𝑤 + (1 − 𝑤)] = 𝑎𝑐𝑤2 +
(1 − 𝑤)2 = 𝑤 + (1 − 𝑤) = 1.  
Therefore u  is invertible.                ∎ 

Corollay 2.24 :  

Let ℛ be a st. 𝜋-reg. ring and let 𝑎 ∈ ℛ, then 

∃elements 𝑢 ∈ ℛ and ℎ ∈ ℛ s.t.  1.  𝑢  is invertible.      

2.  𝑢ℎ = ℎ𝑢 = 𝑥.     3.   ℎ   is an  w-idempotent. 

Moreover, if 𝐴 is a rg. s.t. for every element 𝑎 ∈ 𝐴 

∃elements  𝑢 ∈ 𝐴 and ℎ ∈ 𝐴 satisfying conditions 

(1),(2) and (3), then 𝐴 is st. 𝜋-reg.. 

Proof:    ←The first assertion directly from theorem 

(2.23). 

The second assertion s.t. let 𝑎 ∈ 𝐴 and there exists 

elements 𝑢 ∈ 𝐴 and ℎ ∈ 𝐴 satisfying condition (1) , 

(2) and (3) for integer 𝑛 > 0 s.t. 

ℎ2𝑛 = ℎ𝑛 .  Then 𝑎𝑛 = 𝑢𝑛ℎ𝑛 = 𝑢2𝑛𝑢−𝑛ℎ2𝑛 

= 𝑎2𝑛𝑢−𝑛 = 𝑎𝑛+1(𝑎𝑛−1𝑢−𝑛)  

And thus S is st. 𝜋 −reg.. 

Remark 2.25:    

We list have other useful relations of the elements use 

in the proof of theorem (2.23). 

 Let 𝑎 is st. 𝜋-reg. elements and a rg. ℛ , and let 

𝑛 ∈ 𝑁 and 𝑎, 𝑐 and w in ℛ be the same in the proof of 

Theorem 2.23. 

Thus we have     𝑎𝑛+1𝑐 = 𝑎𝑛 ,   𝑎𝑐 = 𝑐𝑎 

𝑤 = 𝑎𝑛𝑐𝑛  

𝑎𝑐𝑤 = 𝑤,  
𝑎𝑛𝑤 = 𝑤  

and  𝑎, 𝑐 and 𝑤 commute with ∀ other  

set  𝑢 = 𝑎𝑤 + (1 − 𝑤) 

𝑣 = 𝑎𝑤 − (1 − 𝑤)  

Then 𝑢 and 𝑣 and invertible with inverse  

𝑢−1 = 𝑐𝑤 + (1 − 𝑤)  

𝑣−1 = 𝑐𝑤 − (1 − 𝑤) 

Finally , 𝑎(1 − 𝑤) is nilpotent with (𝑎(1 − 𝑤))𝑛 = 0 

It is st. 𝜋-reg..             ∎ 

It is clearly consequence of corollary (2.24), is 

another proof of the result that 𝐽(𝑅), the Jacobson 

radical of R is nil when R is st. 𝜋-reg.. Since 0 is the 

only idempotent in J(R), nilpotent elements only 

 w-idempotent in J(R). 

← If 𝑎 ∈ 𝐽(ℛ) and h is an w-idempotent in the 

decomposition of a, then h is also in 𝐽(ℛ). Hence   h 

(and hence a) is nilpotent. 

 In the following we will present the very important 

theorem.  

Theorem 2.26 : 

 Let ℛ be a st. 𝜋-reg. rg. if 2 is a unit in ℛ , then for 

all element of ℛ can be expressed as a sum of two 

units. 

Proof: Suppose 𝑎 ∈ ℛ. Then as in the proof of 

Theorem 2.23, ∃𝑐 ∈ ℛ and 𝑛 ∈ 𝑁 s.t. 𝑎𝑐 = 𝑐𝑎 and 

𝑎𝑛+1𝑐 = 𝑎𝑛. 
Let elements 𝑤, 𝑢, 𝑣, 𝑢−1and 𝑣−1 in ℛ be define as in 

remarks following colloary 2.24, Since 𝑣 commutes 

with  

𝑎(1 − 𝑤), we have that 2−1𝑣 + 𝑎(1 − 𝑤) is a unit. 

Thus 2−1𝑢 + [2−1𝑣 + 𝑎(1 − 𝑤)] = 

2−1(𝑎𝑤 + (1 − 𝑤)) + 2−1[𝑎𝑤 − (1 − 𝑤)] +

𝑎(1 − 𝑤) = 𝑎𝑤 + 𝑎(1 − 𝑤) = 𝑎. 

Hence 𝑎 is the sum of two units.             ∎ 

Now, Let ℛ be a rg., and let 𝑈(ℛ) denoted the subrg. 

of ℛ  generated by the units of ℛ.  

Thus , Theorem 2.24, shows that if ℛ is st. 𝜋-reg.. 

And 2 is a unit of ℛ, then 𝑈(ℛ) = ℛ. 
𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 2.27:   

Let ℛ be a st. 𝜋-reg. rg. and let 𝐴 be a subrg. of ℛ.  

If 𝑈(ℛ) ≤ 𝐴, then 𝐴 is st. 𝜋-reg.. 

Proof: ←Let 𝑎 ∈ 𝐴. Thus 𝑎 = 𝑢ℎ, where 𝑢 ∈ ℛ, 

ℎ ∈ ℛ, 𝑢 is invertible, 𝑢ℎ = ℎ𝑢, and ℎ𝑛 is idempotent 

for some integer 𝑛 > 0. Then 𝑢 ∈ 𝐴, 𝑢−1 ∈ 𝐴 and so 

ℎ = 𝑢−1𝑎 ∈ 𝐴. Thus the factorization in ℛis also a 

factorization in 𝐴, and so by corollary (2.24), 𝐴 is st. 

𝜋-reg..            ∎ 

Proposition 2.28:   

Every element 𝑎 in a st. 𝜋-reg. rg. ℛ is unit st. 𝜋-reg.;  

i.e. 𝑎 has a generalized invers of st. 𝜋-reg. which is 

invertible. 

Proof:  Let 𝑎 ∈ ℛ. Then as in the proof of theorem 

(2.23), ∃ 𝑐 ∈ ℛ and 𝑛 ∈ 𝑁 s.t. 𝑎𝑐 = 𝑐𝑎 and 𝑎𝑛+1 =
𝑎𝑛 let elements 𝑤 and 𝑢 in ℛ be defined an in the 

remarks following corollary (2.24). 

Then 𝑎𝑛+1𝑢−1 = 𝑎𝑛+1[𝑐𝑤 + (1 − 𝑤)] 
= 𝑎𝑛𝑎𝑐𝑤 + 𝑎𝑛+1 − 𝑎𝑎𝑛𝑤  

= 𝑎𝑛𝑤 + 𝑎𝑛+1 − 𝑎𝑛+1  

= 𝑎𝑛.                  ∎ 

Definition 2.29 [5]: 

A ring R is said to be reduced if it has no nonzero 

nilpotent elements. 

Proposition 2.30:  

Let ℛ be a reduced st. 𝜋-reg. rg.. Then ℛ is a reg. rg.. 

Proof : Let 𝑎 ∈ ℛ. Then as in the proof of Theorem 

2.23, ∃ 𝑐 ∈ ℛ and 𝑛 ∈ ℛ s.t.  𝑎𝑐 = 𝑐𝑎 and  𝑎𝑛+1 =
𝑎𝑛 . 
Let 𝑤 = 𝑎𝑛𝑐𝑛 , then as in the remark following 

corollary 2.24 , 

𝑎(1 − 𝑤) is nilpotent. 

Hence 𝑎 = 𝑎𝑛+1𝑐𝑛 = 𝑎(𝑎𝑛−1𝑐𝑛)𝑎.    ∎ 
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 𝛑 -بعض النتائج حول الحلقات المنتظمة القوية من نمط 

 سنان عمر الصالحي ،عماد ابراهيم جاسم 
 قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

 

 الملخص
وبعة  الصصةا ا التةي تعاةي ايضةا بعة  النتةا د الجد ةدح حةوا الحلقةة المنتممةة  π–في هذا البحث قمنا بدراسة الحلقةة المنتممةة القويةة مةط نمة  

 وارتبااه بحلقات اصرى . π–القوية مط نم  
 


