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1. Introduction

Let R be a ring we study concept of st. m-reg. ring.,
which introduced 1954 by Azumaya [2], and we give
background theorems and corollary which we need in
this paper also give some new results of st. m-reg.
rg. and its connection with other rg.s. An element
a € R is called regular element if there exists some
b € R such that aba = a. A ring is called regular
ring if every element is regular.

2. Strongly m-reg. ring.

Definition 2.1 [2]:

we call a st. w —regular if it is both right = —
regular and left T — regular.

Now it can readily be seen that a power a™ of a is
right (or left) reg. iff here exists an element b of s.t.
a™*b = a®™ (or ba™*! = a™), where

a,ber.

Theorem 2.2 [2]:

Under the assumption that R is of bounded index,
the following four conditions are equivalent to Vv
other:

(1) R m-reg.,

(2) R is right .x-reg.,

(3) R is left n-reg.,

(4) R is st. m-reg..
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I n this paper we study the strongly m- regular ring (for short

st. t-reg. rg.) and some properties also give some new results
of st. m-reg. rg. and its connection with other rings.

Lemma 2.3 :

Let b,c satisfy a™'b = a", ca™! = a™ for some
n,m € Z. Then they satisfy a™*b = a™,ca™* =
a™ too.

Proof: When m=n a follows
immediately from a™*1b = a™. Suppose now m < n.
Then a™ = ca™** implies

a™(= c?a™*? = ...) = ¢ ™qg", and so we obtain
am+1b — Cn—man+1b = c~mgn
Similarly , we can verify the validity of ca™*! = a™.
]

Proposition 2.4[2] :

Every St. m-reg. element is r-reg..

Proposition 2.5 [5]:

Let R be a st. m-reg. ring. Then for all a € R, there
exists a positive integer n s.t. a® = eu = ue for some
e € Id(R) and some u € U(R), where Id(R) and
U(R) denote the set of idempotent of R and the set of
units of R, respectively.

Definition 2.6 [8]:

A central idempotent in A is an idempotent in the
central of A.

m+l — om

=a™,
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Theorem 2.7 [5]:
Let R be a rg. with central idempotent. Then R is st.

m-reg. iff N(R) = J(R) and R/N(R) is reg., where

N(R),J(R) denoted the set of all nilpotent and the

Jacobson of R respectively.

Definition 2.8 [1]:

A ring R is called an exchange ring if for every

a € R, there exists e € Id(R) such that e € aR

and 1 — e € (1 — a)R.(Id(R) meanls the set of

all idempotent in R).

Remark 2.9 [1]:

Every st. -reg. rg. is an exchange rg..

Theorem 2. 10[1]:

Let R be an exchange ring and let a be a reg. element

of is st. m-reg., then a is unit-reg element of A..
Definition 2.11 [4]:

Let I be an ideal of a ring R. We say that I is a st.

m-reg. ideal of R in case for any a € I if there exist

neNandb €1st

a™ = a™*1p,

Theorem 2.12 [4]:

Let I be an ideal of a rg. R. Then the following are

equivalent:

(1) I is st. m-reg..

(2) Every element in [ is st. -reg. element.

Proposition 2.13 [6]:

Every right (or left) m-reg. rg. R is st. m-reg..

Remark 2.14:

The factor ring of the integers with respect to the

ideal generated by the integer 4 is a st. m-reg. rg.

which is not a reg. rg..

Theorem 2.15 [7]:

Let R be arg. and I an ideal of R.

(DIf R is a st. m-reg. rg. then so is 73/1 is st. m—
regular ring.

(2)Assume that I is a reg. ideal of R. Then, R is a st.
mt-reg. rg. 1ffso is jz/1.

Proposition 2.16 [7]:

Let R be arg. and P be a prime ideal of R. IfR / p is
st. m-reg., then so is Rp.

Definition 2.17:

Let R be arg. and let a € R, the element a is called
w-idempotent if for some positive integer n, a™ is an
idempotent, i.e. (a")?=a".

Remark: The property that a is an w-idempotent is
equivalent to the property that 3distinct positive
integer n,m s.t. a™ = a™.

On the other hand if there exists positive integer n, m
with n > m with a™ = a™. Then there is some t > 0
st.t(n—m) > m.

Let k=t(n—m)=m and let f = g™ k=qt*-™
then

at=a* =am - qa™ = qMqt™-™

Thus

f= qt—m)—gm+k _ k. m _ jkomgt(n-m) _

akamagktm = fz

~ a is w-idempotent.
Theorem 2.18:
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Let a be a st. reg. element of a ring R. There exists
one and only one element ¢ s.t. ac = ca, a’c =
(ca?) = a and ac?(= c%a) = ¢, and in particular a is
reg. element. For any element b st. a’b=a, ¢
coincides with ab?. Moreover, ¢ commutes with
every element which is commutative with a.
Proof: Let b,d be two elements s.t. a?b = a,da? =
a. Then
(1) ab = ba*b =da,
So that
(2) ab? =dab = d?a.
From (1) we have also
(38) aba =da*?=a=a’b = ada.
Now put ¢ = ab?. It follows then from (1), (2), (3),
that
ac = adab = ab = da daba = ca, a*c = aca =
aba = a,
ac? = dac = dab = ¢, asdesired .
Suppose next ¢’ be any element which satisfies the
same equalities as c:ac’ = c’'a,a’c’ = a, a®c’ =c'.
Then, be replacing b,d in (2) by c,c’ respectively ,
we get ¢ = ac? = ¢’?a = ¢', showing the uniqueness
of c.

For the proof of the last assertion, let z be any
element s.t. az =za. Then we have first caz =
cza = cza’c = ca®zc = azc = zac, ie., z
commutes with ca = ac. It follows from this now
cz = c?az = czca = cazc = zcac = zc, and this
completes the proof. [ |
corollary 2.19[2] :

Let a be ast. m —reg. element of A. Suppose that a™
is right reg.. Then a™ is in fact st. reg., and moreover
there exists an element ¢ s.t. ac = ca and a"*'c =
a™.

Corollary 2.20 [3]:

L et R be a st. m-reg. rg. and s€ R. Then 3 n > 1land
aERsL s™ =s?"aq, sa=asanda’s" =aqa.
Theorem 2.21 :

Let R be a rg. and {S;};c; a collection of st. m-reg.
subrg.s. Then ;Js; is st. m-reg..

Proof: Let €S . U sing one of the S; we can find
n=1 and ac€s; s.t.
s™ = s%q,sa = as and a?s™ = a. Now consider S;
For some m > 1 and b € S; there is a solution for
s = g2mnp  gnmp — ponm pZenm — b Fyrther
gnm — sanam' s"Mg = as™ and aZmSnm = q™.
By corollary 2.26, b = a™ € S;. From a = a®s™ it
follows that a = a™s™ D e §; ifm > 1. If m = 1,
b = —a already. In any case a € S;. ]

Lemma 2.22 [2]:

Let a be a st. w-reg. element of index n, and ¢ an
element s.t. ac = ca and a™*c¢ = a™(as in corollary
2.19. Then a — a?c is a nilpotent element of index n.
We now obtain from corollary (2.19) and lemma
(2.22), immediately the following.

Theorem 2.23:

Let R be aring and let a € R be a st. m-reg. element.

Then there exists elements u € R and h € R s.t.
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1. u is invertible. 2. uh =hu =a 3. his
w-idempotent.

Proof: « By corollary (2.19), 3c € Randn € R
s.t. a™lc = @™ and ca = ac. Then we have
an — an+1C — an+2a2 e — aZnCn — ancnan.
Letw = a™c™.

Then w? = w and the elements a, ¢ and w commute
with Vv other.

We also have acw = ac(a™c"™) = (a™*'c)c" =
ac"=w

and a"w = a™c"a™ = a™.

Letu =aw + (1 —w)
and h = w + a(1 — w) then uh = hu.

And uh = [aw + (1 —w)][w + a(1 —w)] = aw? +
al-w)>=aw+a—aw =a.
Alsohm=[w+a(l-w)]"=w™*+a"(1 -w)"
=w+ad"1l-w)=w+a"—a"w=w.

Thus g is an w-idempotent.

Finally ; let z = [ew + (1 — w)] then zu = uz and
uz =[aw + (1 = w)][ew + (1 — w)] = acw? +
A-wy=w+1-w)=1
Therefore u is invertible.
Corollay 2.24 :

Let R be a st. m-reg. ring and let a € R, then
Jelements u € R and h € R s.t. 1. u is invertible.
2. uh=hu=x. 3. h isan w-idempotent.
Moreover, if Ais a rg. s.t. for every element a € A
Jelements wu € Aand h € A satisfying conditions
(1),(2) and (3), then A is st. m-reg..

Proof:  «The first assertion directly from theorem
(2.23).

The second assertion s.t. let a € A and there exists
elements u € A and h € A satisfying condition (1) ,

(2) and (3) for integer n > 0 s.t.
h?™ = h™. Then a® = u™h"™ = u?"u~"h?"
=gy " = an+1(an—1u—n)

And thus S is st. T —reg..

Remark 2.25:

We list have other useful relations of the elements use

in the proof of theorem (2.23).

Let a is st. m-reg. elements and a rg. R, and let
n € N and a, ¢ and w in R be the same in the proof of
Theorem 2.23.
Thus we have
w=a"c"
acw =w,
aw =w
and a, c and w commute with v other
set u=aw+ (1 —w)
v=aw— (1-w)

Then u and v and invertible with inverse
ul=cw+ (1—-w)
vi=aw—-(1-w)

Finally , a(1 — w) is nilpotent with (a(1 —w))* =0
Itis st. m-reg.. ]

It is clearly consequence of corollary (2.24), is
another proof of the result that J(R), the Jacobson
radical of R is nil when R is st. m-reg.. Since 0 is the
only idempotent in J(R), nilpotent elements only

a*tlc = gt

’

ac = ca
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w-idempotent in J(R).

« If a€eJ(R) and h is an w-idempotent in the
decomposition of a, then h is also in J(R). Hence h
(and hence a) is nilpotent.

In the following we will present the very important
theorem.

Theorem 2.26 :

Let R be a st. m-reg. rg. if 2 is a unit in R, then for
all element of R can be expressed as a sum of two
units.

Proof: Suppose a € R. Then as in the proof of
Theorem 2.23, 3c € R and n € N s.t. ac = ca and
an+1C = a™.

Let elements w,u, v,u"tand v=1 in R be define as in
remarks following colloary 2.24, Since v commutes
with

a(1 —w), we have that 271v + a(1 — w) is a unit.
Thus 2 u + 27w + a(1 —w)] =

27 aw+ (A —w)) + 2 aw — (1 —w)] +
al—-w)=aw+a(l—-w) =a.

Hence a is the sum of two units. ]

Now, Let R be a rg., and let U(R) denoted the subrg.
of R generated by the units of R.

Thus , Theorem 2.24, shows that if R is st. m-reg..
And 2 is a unit of R, then U(R) = R.

Proposition 2.27:

Let R be a st. m-reg. rg. and let A be a subrg. of R.
IfUR) < A, then A is st. m-reg..

Proof: «Let a € A. Thus a = uh, where u € R,
h € R, u is invertible, uh = hu, and h™ is idempotent
for some integer n > 0. Thenu € 4, u™! € A and so
h =u"la € A. Thus the factorization in Ris also a
factorization in A, and so by corollary (2.24), A is st.
m-reg.. ]

Proposition 2.28:

Every element a in a st. w-reg. rg. R is unit st. m-reg.;
i.e. a has a generalized invers of st. m-reg. which is
invertible.

Proof: Let a € R. Then as in the proof of theorem
(2.23),3ceR and n € N s.t. ac = ca and a™*! =
a™ let elements w and u in R be defined an in the
remarks following corollary (2.24).

Then a™*u™! = a™ew + (1 — w)]

= a"acw + a"*! — aa™w
= a"w + g+l — gn+l
=a". ]

Definition 2.29 [5]:
A ring R is said to be reduced if it has no nonzero
nilpotent elements.

Proposition 2.30:

Let R be a reduced st. m-reg. rg.. Then R is a reg. rg..
Proof : Let a € R. Then as in the proof of Theorem
223, 3ceRand neR st. ac=ca and a™*! =
a™.

Let w =a"c" then as in the remark following
corollary 2.24 ,

a(1 — w) is nilpotent.

Hence a=a""1c" =a(a* 1c")a.
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