Study the effect of adding buffer layer and back reflection on the performance of Chalcogenide compounds

Main Article Content

Hardan T. Ghanem

Abstract

     Solar energy is one of the most important methods used worldwide to provide some of the global energy requirements. It is easily available and free from negative effects on the environment. In this research, the possibility of increasing the efficiency of solar cells is investigated. The SCAPS-D simulation is used to investigate the ZnO/ZnS/CNTS solar cell. The practical research is compared with the program, showing that the program simulates the reality due to the high convergence between the practical and theoretical results of the program. By changing the doping ratios of the theoretical cell layers, the cell efficiency shifts from )3.19%( to )9.41%(. The theoretical cell is improved by adding various back reflection layers (BSL), increasing the conversion efficiency from )9.41%( to )11.59%(. After adding more matching layers, the cell's structure becomes ZnO/ZnS/V2O5/CNTS, increasing the conversion efficiency to (14.25%). The ratio of conversion efficiency of ZnS/V2O5/CNTS/CFTS is (17.22%), the filling factor (67.74%), the short circuit current (23.247mA/cm2), and the open circuit voltage (1.0937 V).

Article Details

How to Cite
Ghanem , H. T. (2023). Study the effect of adding buffer layer and back reflection on the performance of Chalcogenide compounds. Tikrit Journal of Pure Science, 28(5), 49–64. https://doi.org/10.25130/tjps.v28i5.1367
Section
Articles
Author Biography

Hardan T. Ghanem , Ministry of Education, Directorate of Education, Salah Al-Din Governorate, Iraq

 

 

References

[1] Skhouni, O., El Manouni, A., Bayad, H., & Mari, B. (2017). Boosting the performance of solar cells with intermediate band Absorbers the case of ZnTe: O. Journal of Energy and Power Engineering, 11, 417-426. Doi: 10.17265/1934-8975/2017.06.007. [2] Simya, O. K., Selvam, M., Karthik, A., & Rajendran, V. (2014). Dye-sensitized solar cells based on visible-light-active TiO2 heterojunction nanoparticles. Synthetic metals, 188, 124-129. doi.org/10.1016/j.synthmet.2013.12.005.

[3] Sarkar, S., Howli, P., Ghorai, U. K., Das, B., Samanta, M., Das, N. S., & Chattopadhyay, K. K. (2018). Flower-like Cu 2 NiSnS 4 microspheres for application as electrodes of asymmetric supercapacitors endowed with high energy density. CrystEngComm, 20(10), 1443-1454. https://doi.org/10.1039/C7CE02101A. [4] Khattak, Y. H., Baig, F., Ullah, S., Marí, B., Beg, S., & Khan, K. (2018). Effect of Cu2O hole transport layer and improved minority carrier lifetime on the efficiency enhancement of Cu2NiSnS4 based experimental solar cell. Journal of Renewable and Sustainable Energy, 10(4), 043502. doi 10.1063/1.5037471. [5] Chihi, A., Boujmil, M. F., & Bessais, B. (2019). Synthesis and characterization of photoactive material Cu 2 NiSnS 4 thin films. Journal of Materials Science: Materials in Electronics, 30, 3338-3348. doi: 10.1007/s10854-018-00607-z. [6] Mokurala, K., Mallick, S., Bhargava, P., Siol, S., Klein, T. R., & Van Hest, M. F. (2017). Influence of dipping cycles on physical, optical, and electrical properties of Cu2NiSnS4: direct solution dip coating for photovoltaic applications. Journal of Alloys and Compounds, 725, 510-518. doi 10.1016/j.jallcom.2017.07.188. [7] Wang, T. X., Li, Y. G., Liu, H. R., Li, H., & Chen, S. X. (2014). Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method. Materials Letters, 124, 148-150. doi.org/10.1016/j.matlet.2014.03.044 [8] Beraich, M., Taibi, M., Guenbour, A., Zarrouk, A., Bellaouchou, A., & Fahoume, M. (2020). Synthesis of Tetragonal Cu 2 NiSnS 4 Thin Film via Low-Cost Electrodeposition Method: Effect of Ni 2+ Molarity. Journal of Electronic Materials, 49, 728-735. https://doi.org/10.1007/s11664-019-07707-4. [9] Skhouni, O., El Manouni, A., Mari, B. and Ullah, H., (2016). Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. The European Physical Journal Applied Physics, 74(2), p.24602. dio : 10.1051/epjap/2015150365. [10] Hameed, K.Y., Faisal, B., Hanae, T., Marí, S.B., Saira, B. and Kaim, K.N.A., (2019). Modeling of novel-structured copper barium tin sulphide thin film solar cells. Bulletin of Materials Science, 42(5), p.231. doi.org/10.1007/s12034-019-1919-9. [11] Ganvir, R., (2016). Modelling of the nanowire CdS-CdTe device design for enhanced quantum efficiency in Window-absorber type solar cells. The University of Kentucky. doi.org/10.13023/ETD.2016.036.

[12] Baig, F. (2019). Numerical analysis for efficiency enhancement of thin film solar cells (Doctoral dissertation, Universitat Politècnica de València). DOI:10.4995/Thsis/10251/118801. [13] Michaelson, H.B., (1977). The work function of the elements and its periodicity. Journal of applied physics, 48(11), pp.4729-4733. doi 10.1063/1.323539. [14] Khattak, Y.H., Baig, F., Toura, H., Ullah, S., Marí, B., Beg, S. and Ullah, H., (2018). Effect of CZTSe BSF and minority carrier lifetime on the efficiency enhancement of CZTS kesterite solar cell. Current Applied Physics, 18(6), pp.633-641.doi 10.1016/j.cap .2018.03.013. [15] Ghosh, A., Chaudhary, D.K., Biswas, A., Thangavel, R. and Udayabhanu, G., (2016). Solution-processed Cu2XSnS4 (X= Fe, Co, Ni) photo-electrochemical and thin film solar cells on vertically grown ZnO nanorod arrays. RSC Advances, 6(116), pp.115204-115212. dio : 10.1039/c6ra24149b . [16] Cherouana, A. and Labbani, R., (2017). Study of CZTS and CZTSSe solar cells for buffer layers selection. Applied Surface Science, 424, pp.251-255. https://doi.org/10.1016/j.apsusc.2017.05.027.

[17] Jhuma, F. A., Shaily, M. Z., & Rashid, M. J. (2019). Towards high-efficiency CZTS solar cell through buffer layer optimization. Materials for Renewable and Sustainable Energy, 8, 1-7.https://doi.org/10.1007/s40243-019-0144-1. [18] Khattak, Y.H., Baig, F., Toura, H., Beg, S. and Soucase, B.M., (2019). CZTSe Kesterite as an Alternative Hole Transport Layer for MASnI3 Perovskite Solar Cells. Journal of Electronic Materials, 48(9), pp.5723-5733. https://dio.org/10.1007/s11664- 019-07374-5. [19] Khattak, Y. H., Baig, F., Soucase, B. M., Beg, S., Gillani, S. R., & Ahmed, S. (2018). Efficiency enhancement of novel CNTS/ZnS/Zn (O, S) thin film solar cell. Optik, 171, 453-462. doi.org/10.1016/j.ijleo.2018.06.001. [20] Martin A. Crane translation by Dr. Youssef Mawloud Hassan. (1989). Solar Cells Principles of Work, Technology and System Applications. Baghdad National Library. (in Arabic) [21] Mebarkia, C., Dib, D., Zerfaoui, H. and Belghit, R., (2016). Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. Journal of Fundamental and Applied Sciences, 8(2), pp.363-371. doi

10.4314/jfas.v8i2.13. [22] Minbashi, M., Omrani, M. K., Memarian, N., & Kim, D. H. (2017). Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell. Current Applied Physics, 17(10), 1238-1243. doi.org/10.1016/j.cap.2017.06.003. [23] Omrani, M. K., Minbashi, M., Memarian, N., & Kim, D. H. (2018). Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-State Electronics, 141, 50-57. doi.org/10.1016/j.sse.2017.12.004. [24] Anuforonini, G. and Duduyemi, O., (2016). Simulation of the performance of CdTe/CdS/ZnO multi-junction thin film solar cell. Simulation, 3(1), pp.1-10.DOI:10.18488/journal.79/2016.3.1/79.1.1.10.

[25] Boumaour, M., Sali, S., Kermadi, S., Zougar, L., Bahfir, A. and Chaieb, Z., (2019). High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study. Journal of Taibah University for Science, 13(1), pp.696-703. https://doi.org/10.1080/16583655.2019.1623476.

[26] Bayad, H., El Manouni, A., Marí, B., Khattak, Y.H., Ullah, S. and Baig, F., (2018). Influence of P+-ZnTe back surface contact on photovoltaic performance of ZnTe based solar cells. Optical and Quantum Electronics, 50(6), p.259.https://doi.org/10.1007/s11082-018-1530-0.

[27] Sawicka-Chudy, P., Sibiński, M., Wisz, G., Rybak-Wilusz, E. and Cholewa, M., (2018),. Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS. In Journal of Physics: Conference Series (Vol. 1033, No. 1, p. 012002). IOP Publishing. Dio.10.1088/1742-6596/1033/1/012002.

[28] Olopade, M., Adewoyin, A., Chendo, M. and Bolaji, A., (2017), June. The Study of Some Materials as Buffer Layer in Copper Antimony Sulphide (CUSbS 2) Solar Cell Using SCAPS 1-D. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (pp. 2381-2384). IEEE. doi: 10.1109/PVSC.2017.8366580

[29] Rafee Mahbub, M., Islam, S., Anwar, F., Satter, S. S., & Ullah, S. M. (2016). Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian Journal of Engineering and Technology, 2(52), 1-10.

[30Nichterwitz, M., Caballero, R., Kaufmann, C. A., Schock, H. W., & Unold, T. (2013). Generation-dependent charge carrier transport in Cu (In, Ga) Se2/CdS/ZnO thin-film solar cells. Journal of Applied Physics, 113(4), 044515. doi.org/10.1063/1.4788827

[31] Löckinger, J., Nishiwaki, S., Weiss, T. P., Bissig, B., Romanyuk, Y. E., Buecheler, S., & Tiwari, A. N. (2018). TiO2 as intermediate buffer layer in Cu (In, Ga) Se2 solar cells. Solar Energy Materials and Solar Cells, 174, 397-404. doi.org/10.1016/j.solmat.2017.09.030.

[32] Khattak, Y. H., Baig, F., Ullah, S., Marí, B., Beg, S., & Ullah, H. (2018). Enhancement of the conversion efficiency of thin film kesterite solar cell. Journal of renewable and sustainable energy, 10(3), 033501. doi.org/10.1063/1.5023478.

[33] Khattak, Y. H., Baig, F., Ullah, S., Marí, B., Beg, S., & Ullah, H. (2018). Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik, 164, 547-555. doi.org/10.1016/j.ijleo.2018.03.055.

[34 Hameed, K. Y., Faisal, B., Hanae, T., Marí, S. B., Saira, B., & Kaim, K. N. A. (2019). Modelling of novel-structured copper barium tin sulphide thin film solar cells. Bulletin of Materials Science, 42, 1-8. doi.org/10.1007/s12034-019-1919-9

[35] Najim, A. H., & Saleh, A. N. (2019). Study effect of window and BSF layers on the properties of the CZTS/CZTSe solar cell by SCAPS–1D. Tikrit Journal of Pure Science, 24(3), 77-83. DOI:https://doi.org/10.25130/tjps.v24i3.372.

[36] Eisele, W., Ennaoui, A., Schubert-Bischoff, P., Giersig, M., Pettenkofer, C.,

Krauser, J., ... & Karg, F. (2003). XPS, TEM and NRA investigations of Zn (Se, OH)/Zn (OH) 2 films on Cu (In, Ga)(S, Se) 2 substrates for highly efficient solar cells. Solar energy materials and solar cells, 75(1-2), 17-26.doi.org/10.1016/S0927-0248(02)00104-6.

[37] Zerfaoui, H., Dib, D., & Kadem, B. (2019). The simulated effects of different light intensities on the SiC-based solar cells. Silicon, 11(4), 1917-1923. doi.org/10.1007/s12633-018-0011-1 .

[38] Gupta, G. K., & Dixit, A. (2018). Simulation studies of CZT (S, Se) single and tandem junction solar cells towards possibilities for higher efficiencies up to 22%. arXiv preprint arXiv:1801.08498. doi.org/10.48550/arXiv.1801.08498.

[39] Bücheler, S. F. (2010). Investigation of compound semiconductors as buffer-layer in thin film solar cells (Doctoral dissertation, ETH Zurich). doi.org/10.3929/ethz-a-006246496.

[40] Mother, S. Like, the localization of both d. Fahr Ghaleb my life and d. Hussein Ali Ahmed, (1990) ."Physics and Technology of Semiconductor Devices", Dar Al-Hekma for Printing and Publishing - Mosul. (in Arabic).

[41] AZZOUZI, G. (2014). Study of silicon solar cells performances using the impurity photovoltaic effect (Doctoral dissertation).