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ABSTRACT 
A point p in the inverse limit space is said to be a cut point of 

this space when excluded from it, when the number of the 

components of that space increases. Therefore, this study aims 

at finding the necessary condition for fixed points in the inverse 

limit space to be cut points. Then, for applying the main theorem 

with some conditions, a sequence of upper semi continuous can 

be employed as a bonding function to get a union of continua as 

a generalized inverse limit space if there is a generalized inverse 

limit for each of them separately.  
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 الشرط الضروري للنقاط الثابتة في فضاءات الغايات المعکوسة 

 2ه فاروق عبدالله مین ،1علي حسن  علي 

 2،1  قسم الریاضیات، كلیة العلوم، جامعة سوران، سوران، اربیل، العراق.
 الملخص 

قطع لفضاء غایة المعکوسة اذا استبعدناها من ذلك الفضاء عندما یزداد عدد قطع الفضاء.  في فضاء الغایة المعكوسة بأنها نقطة    𝑝یقال عن النقطة  

ق للمبرهنة الرئيسة مع بعض كذلك، تم ایجاد الشرط الضروري لتكون النقاط الثابتة في فضاء الغایة المعكوسة نقاط قطع. بالاضافة إلى ذلك وكتطبي

اء الغایة  الشروط فإننا نستطيع ایجاد متتابعة من الحدود العليا شبه المستمرة مثل دالة الترابط للحصول على  على اتحاد الاستمراریة كتعميم لفض

 المعكوسة إذا كناّ قد عممنا الغایة المعكوسة لكل منها بصورة منفصلة.

  الغایات، کونتينيم، النقاط الثابتة، دوال متعددة القيم، دوال شبه متصل علوي.معکوسة الكلمات المفتاحية: 

1. Introduction 

        In 2004, Mahavier introduced a generalized inverse limit on intervals [1]. Later, in 2006, Ingram and 

Mahavier introduced this limit on the compact sets [2]. Recently, researchers published a number of results about 

some continuum properties in an inverse limit space. In 2015, Banic and Martinez found the universal dendrite D3 

as the generalized inverse limit space [3]. In 2022, Corona studied dendrites as the generalized inverse limit space 

[4], while Marsh studied atriodic tree like continua as inverse limits on [0,1] [5]. Currently, the generalized inverse 

limit is a powerful tool in the study of continuum theory.  

       A topological space X is said to be continuum if it is a nonempty, connected, compact and metric space. A 

subcontinuum is a subset of the continuum. In this regard, 2X denotes the hyperspace of X when X is a continuum. 

A set valued function f: X → 2Y is said to be an upper semi-continuous function if for each element x in the space 

X and all open subsets V in the space Y, which contains f(x), there is an open set U in X which contains x such that 

for each element t in U, then f(t) ⊆ V. If X and Y are compact metric spaces and f: X → 2Y is a set valued function, 

then f is an upper semi-continuous function if and only if its graph G(f) = {(x, y): y ∈ f(x)} is a closed subset in 

X × Y [6, p. 3]. Let X and Y be compact Hausdorff metric spaces and f: X → Y be a continuous function. The 

function f is said to be monotone if for each y ∈ Y the inverse image of y (f−1(y)) is a continuum. Let (Xi)i∈N be 

a sequence of continua and fi: Xi+1 → 2Xi be an upper semi-continuous function. The generalized inverse limit 

space of a sequence {Xi , fi} is denoted by lim
⟵
{Xi , fi} and defined by lim

⟵
{Xi, fi} = {(xi)i=1

∞ : xi ∈ fi(xi+1)for all i ∈

N}. All inverse limits in this study are generalized inverse limit spaces. The distance between elements x and y in 

the inverse limit space is defined by d(x, y) = ∑
di(xi,yi)

2i
∞
i=1 , when x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are 

elements in lim
⟵
{Xi, fi} and di is a metric space on Xi bounded by 1. More information about inverse limits of 

continua having set valued upper semi-continuous bonding functions defined on [0,1] can be founded in [7] and 

[6]. 

2. Important Definitions and Examples in Continuum Theory 

      This section presents the important definitions. Most of these definitions are found in Macias (2005) [8], 

Nadler (1978) [9] and Nadler (1992) [10]. 

Definition 2.1: The Gehman Dendrite of order n is denoted by Gn, defined by a dendrite such that all of its 

ramification points are of order n and the set of end points E(Gn) is homeomorphic to the Cantor ternary set. 

Definition 2.2: Harmonic fan continuum is a continuum defined by a union of arcs, joining the point (0,1) to 

https://doi.org/10.25130/tjps.v28i6.1372
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(
1

n
, 0), n ∈ N  together with the arc  A = {(0, y),0 ≤ y ≤ 1}. It is not a locally connected continuum because all 

points in the limit bar are non-locally connected points. It is not a dendrite because it is not locally connected.  

Example 2.3: The continuum Fω is a dendrite defined by the union of sequence of straight lines {ln}n+1
∞  such that 

⋃n=1
∞ {ln} has only one ramification point of order ω and lim

n→∞
Hd(ln, 0) = 0, [7] and [8]. 

Definition 2.4: Let m ∈ {3,4, . . . , ω}, the universal dendrite of order m and be denoted by Dm such that all of its 

ramification points are of order m and for each arc subset A ⊂ Dm, the set of ramification points in the dendrite 

Dm located in A is dense in A. 

Definition 2.5: The Hilbert cube is a continuum which is homeomorphic to the product Q = ∏  Ii
∞
i=1  when Ii is 

the united closed interval [0,1]. 

Definition 2.6: A mapping f: X → Y is said to be an ϵ map if for each element y in Y, the diameter dim (f−1(y)) 

is less than ϵ. 

Definition 2.7: Let X be a continuum and P be a topological property. X is said to be P like if there exists an ϵ map 

from X to a continuum having the property P. 

Definition 2.8: The topologist’s sine curve (The sin(
1

x
) continuum) is a continuum which is homeomorphic to the 

closure of {(x, y) ∈ R: x ∈ (0,1], y = sin(
1

x
)} as shown in Figure 1. 

 

Figure 1: Topologist’s Sine Curve Inverse Limits 

The topologists sine curve is an arc like continuum because for all ϵ > 0, an ϵ map can be found from topologist’s 

sine curve to an arc [see: Macias 2005, p106, Example 2.4.5]. It is homeomorphic to the inverse limit of a single 

bonding mapping over unit interval factor spaces such that f(x) = 2x when 0 ≤ x ≤
1

2
; f(x) =

3

2
− x when 

1

2
< x ≤

1. It is an arc like continuum with two arc components. More details about that inverse limit are found in [7, p11, 

Example 16]. It is irreducible between (1, sin(1)) and (0, y), −1 < y ≤ 1. A confluent image of the topologist’s 

sine curve is an arc or a continuum which is homeomorphic to the topologist’s sine curve.  

Definition 2.9: The double topologist’s sine curve with one limit bar is defined by {(x, y)|y = sin(1/x), −1 ≤

x ≤ 1, x ≠ 0} ∪ {(0, y)| − 1 ≤ y ≤ 1}. It is an arc like continuum with three arc components and is irreducible 

between the points (−1, sin(−1)) and (1, sin(1)) [see: Macias (2005), Example 2.4.6].  

Definition 2.10: The double topologist's sine curve with two limit bars is defined by {(x, y)|y = sin(
1

1−|x|
), −1 <

x < 1} ∪ {(−1, y)| − 1 ≤ y ≤ 1} ∪ {(1, y)| − 1 ≤ y ≤ 1}. It is an arc like continuum with three arc components 

and is irreducible between the points (−1, y1) and (1, y2), −1 ≤ y1, y2 ≤ 1, [Macias (2005), Example 2.4.6].  

Definition 2.11: The Warsaw circle continuum is a union of a continuum X and a continuum Y where X is the 

topologist’s sine curve and Y is an arc joining points (1, sin (1)) and (0, −1). It is a circle like continuum [8]. A 

double Warsaw circle is a union of a double topologist's sine curve continuum and an arc as shown in Figure 2. 

https://doi.org/10.25130/tjps.v28i6.1372
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Figure 2 Warsaw circle with two limit bars 

Definition 2.12: The Knaster, BJK or buckethandle continuum is denoted by K as shown in Figure 3 and defined 

by the following: the non-negative ordinal set of all semi circles with (
1

2
, 0) center and intersect Cantor set C; the 

non-positive ordinal set of all semi circles such that ∀n ∈ N, with center (
5

2.3n
, 0) and intersect all Cantor set points 

in the interval [
2

3n
,

1

3n−1
] [11, p204-205]. 

Figure 3: Knaster continuum 

The name BJK continuum came from the first letters of these three famous mathematicians: Brouwer, Janiszewski 

and Knaster. They constructed such continuum in different ways. It is known that the Knaster continuum is an 

indecomposable continuum. It is an arc like continuum. If K is a Knaster continuum and K′ is the reflection of K 

around the origin, K ∪ K′ is a continuum and arc like but it is not indecomposable continuum. Knaster or BJK 

continuum can be considered as the inverse limit of bonding mapping defined on factor spaces unit open interval 

I, s.t f(x) = 1 − |2x − 1|, x ∈ I [7, p15, Example 22]. A double Knaster (Buckethandle) continuum as shown in 

Figure 4 is defined as the inverse limit with bonding mapping fn defined on intervals such that f(x) = 3x when 

0 ≤ x ≤
1

3
; f(x) = 2 − 3x when  

1

3
< x ≤

2

3
 ; f(x) = 3x − 2 when  

2

3
< x ≤ 1. It is indecomposable arc like 

continuum as well.  

 

Figure 4: A Double Knaster continuum 

Definition 2.13: The Menger continua represent a universal continuum Mn
m, 1 ≤ m ≤ n, and defined as follows: 

https://doi.org/10.25130/tjps.v28i6.1372
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Let Lo = In. It is defined inductively. Let Lk be a collection of cubes and defined for all k ≥ 0. Divide cubes D in 

Lk into 3n(k+1) congruent cubes such that the length edge of the new cubes be 
1

3n(k+1)
. If Fk+1(D) is the collection 

of cubes intersect faces of n dimensional D, then Fk+1 = ⋃{Fk+1(D): D ∈ Fk}. Define Mm
n  by Mm

n = ⋂i=0
∞ (⋃Fi ). 

Sierpinski universal plane curve is M1
2.  

Let Xo = I2. Divide Xo into nine congruent squares and remove the middle one to get X1 = Xo\int([
1

3
,
2

3
] × [

1

3
,
2

3
]). 

Similarly, for the rest of the remaining eight squares to get X2. This process is continued in this way to get X3, X4 , . ... 

The intersection X = ⋂i=1
∞ {Xi} of all Xi, i = 1,2, . .. is said to be Sierpinski Universal Curve. It is a locally connected 

continuum curve and it does not have any cut points. It is embedded in I2 so that R\X has these components 

K1, K2, . .. such that diam(Ki) → 0, b(Ki) ∩ b(Kj) = ∅ for i ≠ j and the boundary of Kj is a simple closed curve 

and the union of ⋃i=1
∞ Ki is dense in X2.  

Definition 2.14: A. topological space X is said to be a locally connected continuum if for each element p in X and 

each neighborhood U of p, there exists a continuum neighborhood of p in U [11]. 

Definition 2.15: A dendrite X is said to be a locally connected continuum if it does not have any simple closed 

curve. Dendrites are hereditary unicoherent that is the intersection of any of its two sub continua is a continuum. 

Definition 2.16: Let f: X → X be a continuous function. A point p in X is said to be a fixed point if p = (a, a) is an 

element in the graph G(f) in X2 [12]. 

Definition 2.17: Let f: I → 2I be an upper semi continuous function and X = lim
⟵
{I, f} be the generalized inverse 

limit space. A point p in X is said to be a fixed point if p = (a, a, a, a, a, … ) where a ∈ I and a = f−1(a).   

3. Main Theorems 

This section clarifies how the fixed points in the inverse limit space are considered cut points under some 

restrictions. It starts with some basic definitions. A point p in a dendrite D is said to be an endpoint of the dendrite 

D if for any two arcs containing p there is another point in the intersection of them. The point p in the dendrite D 

is an ordinary point of D if D ∩ {p}c has only two components, and the point p is said to be a ramification point of 

the dendrite D if D ∩ {p}c has n components for n ≥ 3. The order of a point p in a dendrite D is n, where n is an 

element in the set N ∪ {ω}, if D ∩ {p}c has n components. These notations are used: E(D) is used for the set of end 

points of the dendrite D and R(D) is used for the set of ramification point of D. The dendrite Gn or Gehman dendrite 

or order n  is the dendrite where all of its ramification points are of order n  and its E(D) is homeomorphic to the 

Cantor set [13, Theorem 4.1]. 

The first main theorem in this study is as follows: 

Theorem 3.1 Let f: [0,1] → 2[0,1] be an upper semi continuous function such that G(f) = ⋃ [G(fi)]
n
i=1  is a 

continuum, where fi|[ai−1,ai]: Ji = [ai−1, ai] → 2Ji, i = 1, . . . , n − 1 is the restriction of f on Ji, G(fi) ∩ yi = (ai, ai) 

and G(fi) ∩ xi = (ai, ai) where yi(x) = ai and xi(y) = ai are horizontal and vertical line segments, respectively. 

If yi(x) ∩ G(fi) is a non-degenerate, then yi(x) ∩ G(fk) is degenerate for k ≠ i. If the inverse limit is a continuum 

and points pi = (ai, ai, ai, . . . ) i = 1, 2, . . . , n − 1 are locally connected points in lim
⟵
{I, f}, then they are cut points 

of lim
⟵
{I, f} and lim

⟵
{I, f} = ⋃i=1

n lim
⟵
{Ji, fi}.   

Proof.  Since for each t ∈ int(Ji), f
−1(t) ∈ int(Ji), so for each t ∈ fi(Ji) ∩ int(Ji), f

−1(t) ∈ fi(Ji) ∩ int(Ji). So, 

G(fi) and G(fi
−1) are subsets of Ii

2. Let (x, y) ∈ int(G(fi)). It is clear from the definition of fi that ai−1 < x, y < ai. 

Let ϵ1 = min{
|x−ai−1|

2
,
|ai−x|

2
} and ϵ2 = min{

|y−ai−1|

2
,
|ai−y|

2
}. Let ϵ = min{ϵ1, ϵ2}. It is easy to see that the open ball 

https://doi.org/10.25130/tjps.v28i6.1372
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Bϵ(x, y) is a proper subset of  int(I2), so it does not contain any point in Ji−1
2  nor Ji+1

2  or any point in Jk
2 where k ≠

i. It follows that (x, y) is not a limit point of any point Jk
2 where k ≠ i. Consequently, any point G(fi) does not 

belong to the derive set of Jk
2 where k ≠ i. Thus, G(fi) does not contain any point of G(fk) for k ≠ i. Therefore, the 

intersection of G(fi) and the closure of G(fk), ((G(fk) ) is empty for all i ≠ k. Let pi = (ai, ai, . . . ) be a point in 

lim
⟵
{I, fi} such that i ∈ {1,2,3, . . . , n − 1}. Note that πm,m+1(pi) = (ai, ai), for i ∈ N. To prove that pi is a cut point 

of the inverse limit space, it is necessary to prove that there exists an open neighborhood Bϵ(pi) in I2 of pi such 

that (Bϵ(pi) ∩ lim
⟵
{I, fi})\{pi} is disconnected. Let ϵ1 = min{

|x−ai−1|

2
,
|ai−x|

2
} and ϵ2 = min{

|y−ai−1|

2
,
|ai−y|

2
}. Let U ∩

lim
⟵
{I, fi} be a neighborhood of pi in the inverse limit space where U = Πi=1

m−1I × (pk − ϵ1, pk + ϵ1) × (pk −

ϵ2, pk + ϵ2) × Q, where Q = Πi=m+2
∞ I. It is clear that (U1 ∩ lim

⟵
{I, fi}) and (U2 ∩ lim

⟵
{I, fi}) are disjoint at pi where 

U1 = Πi=1
m−1I × (pk, pk + ϵ1) × (pk, pk + ϵ2) × Q, U2 = Πi=1

m−1I × (pk − ϵ, pk) × (pk − ϵ, pk) × Q, where Q =

Πi=m+2
∞ I and their union is U. Using [13, Theorem 26.5, p. 192], it is obtained that U1 and U2 are separated. Since 

the image and the pre image of any point in Ji will stay in Ji, so lim
⟵
{Ji, fi} is homeomorphic to lim

⟵
{Ji, fi|[ai−1,ai]}. It 

is obtained that lim
⟵
{I, f} is homeomorphic to ⋃ lim

⟵
{Ji, fi|[ai−1,ai]}

n
i=1 . This represents the end of the proof. 

4. Applications 

 This section presents several applications of Theorem 3.1. It can be proved that the union of finitely 

many inverse limit continua is the inverse limit of a single bonding map on [0,1] under some restrictions.  

Example 4.1 Let a set valued function f: [0,1] → 2[0,1] be an upper semi continuous function defined by:                               

f(x) =

{
 
 
 

 
 
 {0,

1

2
}   if  x ∈ [0,

1

4
]

1

4
   if   x =

1

4

{0,
1

4
}   if   x ∈ [

1

4
,
1

2
]

 2x − 1  if     x ∈ {
1

2
,
3

4
}

−x +
7

4
   if    x ∈ {

3

4
, 1}

 

The point (
1

2
,
1

2
) is the separated point of the inverse limit space and the inverse limit space lim

⟵
{I, f} is the union of 

lim
⟵
{I1, f1} and lim

⟵
{I2, f2} where I1 = [0,

1

2
] and I2 = [

1

2
, 1].  

Proof: Note that the current bonding upper semi continuous function satisfies the requirement of Theorem 3.1. 

Again the inverse limit space is the union of lim
⟵
{I1, f1} and lim

⟵
{I2, f2} where I1 = [0,

1

2
] and I2 = [

1

2
, 1]. Since the 

graph of bonding upper semi continuous function of f1 and that found in [6, Example 2.22] are Markove like in 

the same pattern, so they have a homeomorphic inverse limit space, which is G3 [15]. In the same way, lim
⟵
{I2, f2} 

and the inverse limit in [7, Example 16] are homeomorphic, representing the closure of a topological array R and 

R\R as shown in Figure 1. The inverse limit space is homeomorphic to the union of the above inverse limits by 

identifying the point (
1

2
,
1

2
,
1

2
, . . . ) as shown in Figure 5. The point (

1

2
,
1

2
, . . . ) is a separated point of the inverse limit 

space and the inverse limit space lim
⟵
{I, f} is the union of lim

⟵
{I1, f1} and lim

⟵
{I2, f2} where I1 = [0,

1

2
] and I2 = [

1

2
, 1].  

 

 

  

https://doi.org/10.25130/tjps.v28i6.1372


  

 

  
Tikrit Journal of Pure Science (2023) 28 (6): 164-171 
Doi: https://doi.org/10.25130/tjps.v28i6.1372  

 

170 

 

 

 

 

 

Figure 5: Union of G3 and Topologist’s Sine Curve Inverse Limits 

 

Example 4.2 Let f1 be defined as in [6, Example 2.17, p36]; f3 is defined as in [7, Example 16, p11]; f2 is 

defined as in equation 4.1: Let a set valued function f: [0,1] → 2[0,1] be an upper semi continuous function as in 

equation 4.2.  

 f2(x) =

{
 
 

 
 3x           if     x ∈ [0,

1

3
]

−3x + 2  if   x ∈ [
1

3
,
2

3
]

3x − 2  if   x ∈ [
2

3
, 1]

     (4.1) 

 

 f(x) =

{
 
 

 
 

f1(3x)

3
         if     x ∈ [0,

1

3
]

 
1

3
+

f2(3x−1)

3
   if   x ∈ [

1

3
,
2

3
]

 
2

3
+

f3(3x−2)

3
    if   x ∈ [

2

3
, 1]

   (4.2) 

Using Theorem 3.1, the points (
1

3
,
1

3
, . . . ) and (

2

3
,
2

3
, . . . ) are separated points of the inverse limit space and 

the inverse limit space is homeomorphic to lim
⟵
{I1, f1} ∪ lim

⟵
{I2, f2} ∪ lim

⟵
{I3, f3} as shown in Figure 6.  

 

   

 

  

   

  

Figure 6: The union of three inverse limits 

5. Conclusion  

      In conclusion, this study found the necessary condition for some points in the set of fixed points in the 

generalized inverse limit space to be cut points. As for the application of the new main theorem, points in the 

inverse limit space can be easily defined as cut points from their graph of upper semi continuous bonding functions. 

In addition, a sequence of upper semi continuous bonding functions on [0,1] can be easily invented to obtain a 

union of two or more than two continua by knowing the inverse limit of each one of them separately.  
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