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1. Introduction
In 2004, Mahavier introduced a generalized inverse limit on intervals [1]. Later, in 2006, Ingram and
Mahavier introduced this limit on the compact sets [2]. Recently, researchers published a number of results about
some continuum properties in an inverse limit space. In 2015, Banic and Martinez found the universal dendrite D5
as the generalized inverse limit space [3]. In 2022, Corona studied dendrites as the generalized inverse limit space
[4], while Marsh studied atriodic tree like continua as inverse limits on [0,1] [5]. Currently, the generalized inverse
limit is a powerful tool in the study of continuum theory.

A topological space X is said to be continuum if it is a nonempty, connected, compact and metric space. A
subcontinuum is a subset of the continuum. In this regard, 2X denotes the hyperspace of X when X is a continuum.
A set valued function f: X — 2Y is said to be an upper semi-continuous function if for each element x in the space
X and all open subsets V in the space Y, which contains f(x), there is an open set U in X which contains x such that
for each element t in U, then f(t) € V. If X and Y are compact metric spaces and f: X — 2Y is a set valued function,
then f is an upper semi-continuous function if and only if its graph G(f) = {(x,y):y € f(x)} is a closed subset in
X XY [6, p. 3]. Let X and Y be compact Hausdorff metric spaces and f: X — Y be a continuous function. The
function f is said to be monotone if for each y € Y the inverse image of y (f~1(y)) is a continuum. Let (X;);en be
a sequence of continua and f;: X;;; — 2%i be an upper semi-continuous function. The generalized inverse limit
space of a sequence {X;, f;} is denoted by lgn{Xi,fi} and defined by liin{Xi, fi} = {(xi)i21: X € fi(x;.)foralli €
N}. All inverse limits in this study are generalized inverse limit spaces. The distance between elements x and y in

o di(Xiyi)

the inverse limit space is defined by d(x,y) = X2, S when x = (x4,X5,...) and y = (y4,y2,...) are

elements in lim{X;, f;} and d; is a metric space on X; bounded by 1. More information about inverse limits of

continua having set valued upper semi-continuous bonding functions defined on [0,1] can be founded in [7] and
[6].
2. Important Definitions and Examples in Continuum Theory
This section presents the important definitions. Most of these definitions are found in Macias (2005) [8],
Nadler (1978) [9] and Nadler (1992) [10].
Definition 2.1: The Gehman Dendrite of order n is denoted by G,, defined by a dendrite such that all of its
ramification points are of order n and the set of end points E(G,,) is homeomorphic to the Cantor ternary set.

Definition 2.2: Harmonic fan continuum is a continuum defined by a union of arcs, joining the point (0,1) to
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(%, 0), n € N together with the arc A = {(0,y),0 <y < 1}. It is not a locally connected continuum because all

points in the limit bar are non-locally connected points. It is not a dendrite because it is not locally connected.
Example 2.3: The continuum F, is a dendrite defined by the union of sequence of straight lines {1,,}5,; such that

Upz1{l,} has only one ramification point of order w and lim Hyq(1,,, 0) = 0, [7] and [8].

Definition 2.4: Let m € {3,4,..., w}, the universal dendrite of order m and be denoted by D, such that all of its
ramification points are of order m and for each arc subset A < D, the set of ramification points in the dendrite
D, located in A is dense in A.

Definition 2.5: The Hilbert cube is a continuum which is homeomorphic to the product Q = []2; I; when ; is
the united closed interval [0,1].

Definition 2.6: A mapping f: X — Y is said to be an e map if for each element y in Y, the diameter dim (f~1(y))
is less than e.

Definition 2.7: Let X be a continuum and P be a topological property. X is said to be P like if there exists an e map

from X to a continuum having the property P.

Definition 2.8: The topologist’s sine curve (The Sin(i) continuum) is a continuum which is homeomorphic to the

closure of {(x,y) e Rix € (0,1],y = Sin@} as shown in Figure 1.

Figure 1: Topologist’s Sine Curve Inverse Limits
The topologists sine curve is an arc like continuum because for all e > 0, an € map can be found from topologist’s
sine curve to an arc [see: Macias 2005, p106, Example 2.4.5]. It is homeomorphic to the inverse limit of a single

bonding mapping over unit interval factor spaces such that f(x) = 2xwhen 0 < x < 2; f(x) = %— X when% <x<

1. Itis an arc like continuum with two arc components. More details about that inverse limit are found in [7, p11,
Example 16]. It is irreducible between (1,sin(1)) and (0,y), —1 <y < 1. A confluent image of the topologist’s
sine curve is an arc or a continuum which is homeomorphic to the topologist’s sine curve.

Definition 2.9: The double topologist’s sine curve with one limit bar is defined by {(x,y)|y = sin(1/x),—1 <
x<1,x#0}U{(0,y)] —1<y<1} Itisan arc like continuum with three arc components and is irreducible

between the points (—1,sin(—1)) and (1, sin(1)) [see: Macias (2005), Example 2.4.6].

Definition 2.10: The double topologist's sine curve with two limit bars is defined by {(x,y)|y = sin(l%w), -1<

x<BU{(-Ly|-1<y<1}u{l,y)|—1<y<1} Itisanarc like continuum with three arc components
and is irreducible between the points (—1,y;) and (1,y,), =1 <y;,y, < 1, [Macias (2005), Example 2.4.6].

Definition 2.11: The Warsaw circle continuum is a union of a continuum X and a continuum Y where X is the
topologist’s sine curve and Y is an arc joining points (1, sin (1)) and (0, —1). It is a circle like continuum [8]. A

double Warsaw circle is a union of a double topologist's sine curve continuum and an arc as shown in Figure 2.
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Figure 2 Warsaw circle with two limit bars

Definition 2.12: The Knaster, BJK or buckethandle continuum is denoted by K as shown in Figure 3 and defined
by the following: the non-negative ordinal set of all semi circles with (%, 0) center and intersect Cantor set C; the

non-positive ordinal set of all semi circles such that Vn € N, with center (%, 0) and intersect all Cantor set points

in the interval [=, —] [11, p204-205].

30’ 3n-1

Figure 3: Knaster continuum

The name BJK continuum came from the first letters of these three famous mathematicians: Brouwer, Janiszewski
and Knaster. They constructed such continuum in different ways. It is known that the Knaster continuum is an
indecomposable continuum. It is an arc like continuum. If K is a Knaster continuum and K' is the reflection of K
around the origin, KU K’ is a continuum and arc like but it is not indecomposable continuum. Knaster or BIK
continuum can be considered as the inverse limit of bonding mapping defined on factor spaces unit open interval
I,stf(x) =1—|2x— 1|, x € I [7, p15, Example 22]. A double Knaster (Buckethandle) continuum as shown in
Figure 4 is defined as the inverse limit with bonding mapping f,, defined on intervals such that f(x) = 3x when
0<x< %; f(x) = 2 — 3x when §< X Sg ; f(x) =3x—2 when §< x < 1. It is indecomposable arc like

continuum as well.

S ———

Figure 4: A Double Knaster continuum

Definition 2.13: The Menger continua represent a universal continuum MZ, 1 < m < n, and defined as follows:
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Let L, = I™. Itis defined inductively. Let Ly be a collection of cubes and defined for all k > 0. Divide cubes D in

1

Ly into 3°&*1 congruent cubes such that the length edge of the new cubes be D If Fiy1 (D) is the collection

of cubes intersect faces of n dimensional D, then Fy,,; = U{Fy,1(D): D € F,}. Define My, by M, = N2, (U F;).

Sierpinski universal plane curve is M2
Let X, = I12. Divide X, into nine congruent squares and remove the middle one to get X; = Xo\int([i,é] X EED-

Similarly, for the rest of the remaining eight squares to get X, . This process is continued in this way to get X5, X,, . ...
The intersection X = N2, {X;} of all X;,i = 1,2, ... is said to be Sierpinski Universal Curve. It is a locally connected
continuum curve and it does not have any cut points. It is embedded in I? so that R\X has these components
Ky, Ky, ... such that diam(K;) — 0, b(K;) N b(K;) = @ for i # j and the boundary of K; is a simple closed curve
and the union of U{2,K; is dense in X2.
Definition 2.14: A. topological space X is said to be a locally connected continuum if for each element p in X and
each neighborhood U of p, there exists a continuum neighborhood of p in U [11].
Definition 2.15: A dendrite X is said to be a locally connected continuum if it does not have any simple closed
curve. Dendrites are hereditary unicoherent that is the intersection of any of its two sub continua is a continuum.
Definition 2.16: Let f: X - X be a continuous function. A point p in X is said to be a fixed point if p = (a,a) isan
element in the graph G(f) in X2 [12].
Definition 2.17: Let f: I — 2! be an upper semi continuous function and X = l(iLn{I,f} be the generalized inverse
limit space. A point p in X is said to be a fixed pointif p = (a,a,a,a,a,...) where a € I and a = f~1(a).

3. Main Theorems
This section clarifies how the fixed points in the inverse limit space are considered cut points under some
restrictions. It starts with some basic definitions. A point p in a dendrite D is said to be an endpoint of the dendrite
D if for any two arcs containing p there is another point in the intersection of them. The point p in the dendrite D
is an ordinary point of D if D n {p}° has only two components, and the point p is said to be a ramification point of
the dendrite D if D N {p}© has n components for n > 3. The order of a point p in a dendrite D is n, where n is an
element in the set N U {w}, if D N {p}° has n components. These notations are used: E(D) is used for the set of end
points of the dendrite D and R(D) is used for the set of ramification point of D. The dendrite G, or Gehman dendrite
or order n is the dendrite where all of its ramification points are of order n and its E(D) is homeomorphic to the
Cantor set [13, Theorem 4.1].
The first main theorem in this study is as follows:
Theorem 3.1 Let £:[0,1] — 2[®% be an upper semi continuous function such that G(f) = U™,[G(f)] is a
continuum, where fi|._ 2 Ji = [ai-q, ai] = 2li i=1,...,n— 1is the restriction of fon J;, G(f;) Ny; = (aj, a;)
and G(f;) N x; = (a;, a;) where y;(x) = a; and x;(y) = a; are horizontal and vertical line segments, respectively.
If y;(x) N G(f;) is a non-degenerate, then y;(x) N G(fy) is degenerate for k # i. If the inverse limit is a continuum

and points p; = (a;,a;,a;,...) i=1,2, ...,n — 1 are locally connected points in lim{I, f}, then they are cut points
of lim{], f} and lim{L, f} = UiL,lim{J;, f;}.

Proof. Since for each t € int(J;), f~1(t) € int(J;), so for each t € f;(J;) n int(J;), f~1(t) € ;(J;) N int(J;). So,
G(f;) and G(f;™1) are subsets of I2. Let (x,y) € int(G(f;)). It is clear from the definition of f; that a;_; < x,y < a;.

[x—aj—q| laj—x|

Lete; = min=—=4, "=} and ¢, = min{'y_z;ll,'aiz—_y'}. Let € = min{e,, €,}. It is easy to see that the open ball
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B.(x,y) is a proper subset of int(12), so it does not contain any point in J2, nor J ; or any point in J2 where k #
i. It follows that (x,y) is not a limit point of any point JZ where k # i. Consequently, any point G(f;) does not
belong to the derive set of ]2 where k # i. Thus, G(f;) does not contain any point of G(f) for k = i. Therefore, the
intersection of G(f;) and the closure of G(fy), ((G(f,) ) is empty for all i # k. Let p; = (aj,a;,...) be a point in
l(iln{l, fi} such thati € {1,2,3,...,n — 1}. Note that 1, ,,+1 (p;) = (aj,a;), for i € N. To prove that p; is a cut point

of the inverse limit space, it is necessary to prove that there exists an open neighborhood B(p;) in 12 of p; such

|X_Zi—1| , Iaiz_xl} and 62 — min{ly_zi_ll , Iaiz_w}. Let U N

that (B.(p;) N lim{L, f;})\{p;} is disconnected. Let ; = min{
lim{I, f;} be a neighborhood of p; in the inverse limit space where U = 27 X (px — €1, Pk + €1) X (Px —
€2, Px + €2) X Q, where Q = 12, ., L. Itis clear that (U; n lim{J, f;}) and (U, N lim{J, f;}) are disjoint at p; where

U; = 27T X (P Prc + €1) X (Pro Px + €2) X Q, Uy = 2T X (pi — €, py) X (P — € Pr) X Q, where Q =
12,41 and their union is U. Using [13, Theorem 26.5, p. 192], it is obtained that U, and U, are separated. Since

the image and the pre image of any point in J; will stay in J;, so lim{J;, f;} is homeomorphic to lim{]i, fi|[ai_1‘ai]}. It

is obtained that lim{I, f} is homeomorphic to UL, lim{]i, fi|[ai_1_ai]}. This represents the end of the proof.

4. Applications

This section presents several applications of Theorem 3.1. It can be proved that the union of finitely
many inverse limit continua is the inverse limit of a single bonding map on [0,1] under some restrictions.

Example 4.1 Let a set valued function f: [0,1] — 2[%] be an upper semi continuous function defined by:

i) =4 {03} if xe[5,3]

2x—1if x€{;,3

7 . 3
—x+7 if xe {Z’ 1}
The point (%é) is the separated point of the inverse limit space and the inverse limit space lim{I, f} is the union of

lim{I,, f; } and lim{I,, f,} where I, = [0, %] and I, = [%, 1].

Proof: Note that the current bonding upper semi continuous function satisfies the requirement of Theorem 3.1.
Again the inverse limit space is the union of lim{I,, f; } and lim{I,, f,} where I, = [0,%] and I, = [%, 1]. Since the

graph of bonding upper semi continuous function of f; and that found in [6, Example 2.22] are Markove like in

the same pattern, so they have a homeomorphic inverse limit space, which is G; [15]. In the same way, lim{I,, f,}

and the inverse limit in [7, Example 16] are homeomorphic, representing the closure of a topological array R and

R\R as shown in Figure 1. The inverse limit space is homeomorphic to the union of the above inverse limits by
identifying the point (%%% ... ) as shown in Figure 5. The point (%% ...) is aseparated point of the inverse limit

space and the inverse limit space lim{I, f} is the union of lim{I,, f, } and lim{I,, f,} where I, = [0,%] andI, = [%, 1].
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Figure 5: Union of G; and Topologist’s Sine Curve Inverse Liinits

Example 4.2 Let f; be defined as in [6, Example 2.17, p36]; f; is defined as in [7, Example 16, p11]; f, is
defined as in equation 4.1: Let a set valued function f: [0,1] — 2[%] be an upper semi continuous function as in
equation 4.2.
(3x  if x€[0,]
f,00 ={-3x+2 if x€[3,7] (4.1)
3x— 2 if x€[5,1]

( —fl(;") if x€[0,]]
1 2

fx) =4 $+2E0 if xe 3,3 (4.2)
2 f3(3x-2)

. 2
3 + s if xe [5, 1]
Using Theorem 3.1, the points (%% ...)and (gg ...) are separated points of the inverse limit space and

the inverse limit space is homeomorphic to lim{I,, f; } U lim{I,, f,} U lim{I, f;} as shown in Figure 6.

Figure 6: The union of three in fSEjimlts
9. Conclusion

In conclusion, this study found the necessary condition for some points in the set of fixed points in the
generalized inverse limit space to be cut points. As for the application of the new main theorem, points in the
inverse limit space can be easily defined as cut points from their graph of upper semi continuous bonding functions.
In addition, a sequence of upper semi continuous bonding functions on [0,1] can be easily invented to obtain a
union of two or more than two continua by knowing the inverse limit of each one of them separately.
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