Synthesis and Spectroscopic study of Pd(II)- Salicylaldoxime complexes with amine ligands

Main Article Content

Emad N. Al_Sabawi
Ahmed S. Al-Janabi
Hayfa Muhammed Jerjes

Abstract

New Pd(II) complexes  of Salicylaldoxime (HSaly) with amine ligands {amine = Bipy, Phen and en} were synthesized and characterized by using CHN analysis, FT-IR spectra, molar conductivity and 1H NMR spectra. The HSaly ligand was coordinated with the Pd(II) ion as bidentate chelating ligand in complex [Pd(Saly)2], through oxygen atom of hydroxylate group and nitrogen atom of oxime group. However, it was bonded as monodentate ligand in complexes [Pd(Saly)2(amine)] (2-4) via the oxygen atom of hydroxylate group. The amines were coordinated as bidentate chelate via N atom to give a square planner around the Palladium (II).

Article Details

How to Cite
Emad N. Al_Sabawi, Ahmed S. Al-Janabi, & Hayfa Muhammed Jerjes. (2021). Synthesis and Spectroscopic study of Pd(II)- Salicylaldoxime complexes with amine ligands. Tikrit Journal of Pure Science, 26(3), 26–34. https://doi.org/10.25130/tjps.v26i3.140
Section
Articles

References

[1] Raptopoulou, C. P., Boudalis, A. K., Lazarou, K. N., Psycharis, V., Panopoulos, N., Fardis, M., ... & Papavassiliou, G.(2008). Salicylaldoxime in manganese (III) carboxylate chemistry: Synthesis, structural characterization and physical studies of hexanuclear and polymeric complexes. Polyhedron, 27(18), 3575-3586. [2] Ramesh, V., Umasundari, P., & Das, K. K. (1998). Study of bonding characteristics of some new metal complexes of salicylaldoxime (SALO) and its derivatives by far infrared and UV spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(2), 285-297. [3] Jayaraju, D., & Kondapi, A. K. (2001). Anti-cancer copper salicylaldoxime complex inhibits topoisomerase II catalytic activity. Current Science, 787-792. [4] Ramesh, V., Umasundari, P., & Das, K. K. (1998). Study of bonding characteristics of some new metal complexes of salicylaldoxime (SALO) and its derivatives by far infrared and UV spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(2), 285-297. [5] Burger, K., & Egyed, I. (1965). Some theoretical and practical problems in the use of organic reagents in chemical analysis—V: Effect of electrophilic and nucleophilic substituents on the stability of salicylaldoxime complexes of transition metals. Journal of Inorganic and Nuclear Chemistry, 27(11), 2361-2370. [6] Wenzel, M., Forgan, R. S., Faure, A., Mason, K., Tasker, P. A., Piligkos, S. & Plieger, P. G. (2009). A New polynuclear coordination type for (salicylaldoxime) copper (II) complexes: Structure and magnetic properties of an (oxime) Cu6 Cluster. [7] Aggarwal, R. C., Singh, N. K., & Singh, R. P. (1984). Magnetic and spectroscopic studies on Salicylaldoxime and o-Hydhoxynaphthaldoxime complexes of some divalent 3d metal ions. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 14(5), 637-650. [8] Smith, A. G., Tasker, P. A., & White, D. J. (2003). The structures of phenolic oximes and their complexes. Coordination chemistry reviews, 241(1-2), 61-85. [9] Cupertino, D., McPartlin, M., & Zissimos, A. M. (2001). Synthesis of cobalt (II) complexes of derivatised salicylaldoxime ligands; X-ray crystal structures of DMSO adducts of bis (3-nitro-5-methylsalicylaldoximato) cobalt (II) and bis (3-nitro-5-phenylsalicylaldoximato) cobalt (II). Polyhedron, 20(26-27), 3239-3247. [10] Abualhaija, M. M., & van den Berg, C. M. (2014). Chemical speciation of iron in seawater using catalytic cathodic stripping voltammetry with ligand competition against salicylaldoxime. Marine Chemistry, 164, 60-74. [11] Ma, Y., Zhang, W., Ou-Yang, Y., Yoshimura, K., Liao, D. Z., Jiang, Z. H., & Yan, S. P. (2007). A three-spin complex [Ni (salox) 2 (IM4Py) 2] containing salicylaldoxime and nitronyl nitroxide: Structure and magnetic properties. Journal of molecular structure, 833(1-3), 98-101. [12] Kumar, B., Prasad, K. K., & Srivastawa, S. K. (2010). Synthesis of oxygen bridged complexes of Cu (II) or Ni (II)-salicylaldoxime with alkali metal salts of some organic acids and studies on their antimicrobial activities. Oriental Journal of Chemistry, 26(4), 1413. [13] Lumme, P., Elo, H., & Jänne, J. (1984). Antitumor activity and metal complexes of the first transition series: Trans-bis (salicylaldoximato) copper (II) and related copper (II) complexes, a novel group of potential antitumor agents. Inorganica chimica acta, 92(4), 241-251. [14] Thorpe, J. M., Beddoes, R. L., Collison, D., Garner, C. D., Helliwell, M., Holmes, J. M., & Tasker, P. A. (1999). Surface coordination chemistry: Corrosion inhibition by tetranuclear cluster formation of iron with salicylaldoxime. Angewandte Chemie International Edition, 38(8), 1119-1121. [15] Prasad, R. L., Aggarwal, R. C., & Bala, R. (1990). Ternary complexes of 3d metal (II) ions with acetylacetone and salicylaldoxime. Transition Metal Chemistry, 15(5), 379-382. [16] Birnara, C., Kessler, V. G., & Papaefstathiou, G. S. (2009). Mononuclear gallium (III) complexes based on salicylaldoximes: Synthesis, structure and spectroscopic characterization. Polyhedron, 28(15), 3291-3297. [17] Belkhettab, I., Boutamine, S., Slaouti, H., Zid, M. F., Boughzala, H., & Hank, Z. (2020). Synthesis, characterization and structural study of new vanadium complexes with phenolic oxime ligands. Journal of Molecular Structure, 1206, 127597. [18] Nakamura, H., Shimura, Y., & Tsuchida, R. (1963). A study of metal complexes of analytical importance: II complexes of Salicylaldoxime and C-Methyl-salicylaldoxime with Vanadium (V). Bulletin of the Chemical Society of Japan, 36(3), 296-301.

[19] Jayaraju, D., Gopal, Y. V., & Kondapi, A. K. (1999). Topoisomerase II is a cellular target for antiproliferative cobalt salicylaldoxime complex. Archives of biochemistry and biophysics, 369(1), 68-77. [20] Das, A. K. (1990). Statistical aspects of the stabilities of ternary complexes of cobalt (II), nickel (II), copper (II) and zinc (II) involving aminopolycarboxylic acids as primary ligands and salicylaldoxime as a secondary ligand. Transition Metal Chemistry, 15(1), 75-77. [21] Pannu, A. P. S., Stevens, J. R., & Plieger, P. G. (2013). Aryl-Linked Salicylaldoxime-Based Copper (II) Helicates and “Boxes”: Synthesis, X-ray analysis, and anion influence on complex structure. Inorganic chemistry, 52(16), 9327-9337. [20] Bokach, N. A., Haukka, M., Pombeiro, A. J., Morozkina, S. N., & Kukushkin, V. Y. (2002). Concentration dependent switch from addition to substitution in the reaction between salicylaldoxime and a nitrile platinum (IV) complex. Inorganica chimica acta, 336, 95-100. [23] Li, Z., Rao, F., Song, S., Uribe-Salas, A., & López-Valdivieso, A. (2019). Effects of common ions on adsorption and flotation of malachite with salicylaldoxime. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 421-428. [24] Gass, I. A., Milios, C. J., Collins, A., White, F. J., Budd, L., Parsons, S.,. & Brechin, E. K. (2008). Polymetallic clusters of iron (III) with derivatised salicylaldoximes. Dalton Transactions, (15), 2043-2053. [25] Prasad, R. L., Bala, R., & Aggarwal, R. C. (1987). Synthesis and spectroscopic studies on some 3d metal (II) hetero ligand complexes of Salicylaldoxime and 1-Nitroso-2-Naphthol. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 17(7), 709-722. [26] Kukushkin, V. Y., & Pombeiro, A. J. (1999). Oxime and oximate metal complexes: Unconventional synthesis and reactivity. Coordination Chemistry Reviews, 181(1), 147-175. [27] Babu, M. S., Reddy, K. H., & Krishna, P. G. (2007). Synthesis, characterization, DNA interaction and cleavage activity of new mixed ligand copper (II) complexes with heterocyclic bases. Polyhedron, 26(3), 572-580. [28] Ma, Y., Zhang, W., Xu, G. F., Yoshimura, K., Liao, D. Z., Jiang, Z. H., & Yan, S. P. (2007). Synthesis, structure and magnetic properties of a novel nickel (II) radical heterospin complex with salicylaldoxime. Zeitschrift für anorganische und allgemeine Chemie, 633(4), 657-660. [29] Biefeld, L. P., & Howe, D. E. (1939). Separation and determination of copper and nickel bysalicylaldoxime. Industrial & Engineering Chemistry Analytical Edition, 11(5), 251-253. [30] Mason, K., Gass, I. A., White, F. J., Papaefstathiou, G. S., Brechin, E. K., & Tasker, P. A. (2011). Hexa-and octanuclear iron (III) salicylaldoxime clusters. Dalton Transactions, 40(12), 2875-2881. [31] Kukushkin, Y. N., Krylov, V. K., Kaplan, S. F., Calligaris, M., Zangrando, E., Pombeiro, A. J., & Kukushkin, V. Y. (1999). Different chlorination modes of oximes: Chlorination of salicylaldoxime coordinated to platinum. Inorganica chimica acta, 285(1), 116-121.

[32] Vogel, A. I. (1963). A textbook of quantitative inorganic analysis. London: Longmans.

[33] Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coordination Chemistry Reviews, 7 (1): 81–122 [34] Al-Janabi, A. S., Al-Jumaili, W. A., Al-Hayaly, L. J., Al-Jibori, S. A., Schmidt, H., Wagner, C., & Hogarth, G. (2020). Synthesis and in vitro cytotoxicity studies of Pd (II) and Pt (II) acetamide complexes: Molecular structures of trans-[PdCl2 (bzmta)2]. DMF (bzmta= 2-acetylamino-6-methylbenzothiazole) and cis-[PtCl2 (bzta) 2]. 2DMF (bzta= 2-acetylaminobenzothiazole). Polyhedron, 185, 114591 [35] Al-Janabi, A. S., Al-Dulaimi, A. A., Gergees, H. M., & Saleh, M. H. (2019). Synthesis and spectroscopic studies of new palladium (II) complexes of N-hydroxymethysacharin (Sac-CH2OH) and amine or diamines ligands. Oriental Journal of Chemistry, 35(1), 186. [36] Al-Janabi, A. S. (2016). Synthesis and characterization of Pd (II) and Pt (II) complexes containing mixed ligands of thione and diamine. Tikrit Journal of Pure Science, 21(7). [37] Al-Jibori, S. A., Al-Janabi, A. S., Al-Sahan, S. W., & Wagner, C. (2021). Pd (II)-pyrrolidine dithiocarbamate complexes: Synthesis, spectroscopic studies and molecular structure of [Pd (PyDT)(ppy)]. Journal of Molecular Structure, 1227, 129524. [38] Al‐Janabi, A. S., Al‐Samrai, O. A. A., & Yousef, T. A. (2020). New palladium (II) complexes with 1‐phenyl‐1H‐tetrazole‐5‐thiol and diphosphine: Synthesis, characterization, biological, theoretical calculations and molecular docking studies. Applied Organometallic Chemistry, 34(12), e5967. [39] Al-Janabi, A. S., Irzoqi, A. A., & Ahmed, S. A. (2018). Synthesis and characterization of mixed ligands cadmium (II) complexes with N-Hydroxymethylsaccharinate and diphosphines. Tikrit Journal of Pure Science, 21(3), 54-60. [40] Al-Jibori, A. A., Al-Jibori, S. A., & Al-Janabi, A. S. (2019). Palladium (II) and platinum (II) mixed ligand complexes of metronidazole and saccharinate or benzisothiazolinonate ligands, synthesis and spectroscopic investigation. Tikrit Journal of Pure Science, 24(6), 26-32. [41] Al-Jibori, S. A., Al-Nassiry, A. I., Al-Janabi, A. S., & Al-Hayaly, L. J. (2020). Synthesis and

characterization of platinum (II) and palladium (II) diphosphine complexes with heterocyclic N-acetamide or saccharinate ligands. Chemical Data Collections, 30, 100542. [42] Al-Jibori, M. H., Buttrus, N. H., & Al-Janabi, A. S. (2018). Synthesis and studies Pd (II)-NHC complexes with thiosaccharinate, saccharinate or benzothiazolinate ligands. Tikrit Journal of Pure Science, 22(2), 99-103. [43] Al-Janabi, A. S. (2017). In vitro antimicrobial studies of new Zn (II) complexes of N-hydroxymethylsaccharin (Sac-CH2OH) and amine ligands. Journal of Kerbala for Agricultural Sciences, 4(5), 140-149. [44] Al‐Janabi, A. S., Zaky, R., Yousef, T. A., Nomi, B. S., & Shaaban, S. (2020). Synthesis, characterization, computational simulation, biological and anticancer evaluation of Pd (II), Pt (II), Zn (II), Cd (II), and Hg (II) complexes with 2‐amino‐4‐phenyl‐5‐selenocyanatothiazol ligand. Journal of the Chinese Chemical Society, 67(6), 1032-1044.