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ABSTRACT

The primary goals of transportation agencies and

researchers studying traffic operations are to ease traffic and
increase road safety through the use of vehicular ad hoc
networks. Agencies can't achieve their goals without reliable
and consistent data on the current traffic situation. The Level-
of-Service (LOS) index is a helpful measure of freeway traffic
operations. Conventional fixed-location cameras and sensors
are impractical and expensive for gathering reliable traffic
density data on every road in large networks. Flow data is a
new, low-cost option that has the potential to boost safety and
operations. This study proposes an algorithm for hourly LOS
assessment by incorporating flow data provided by the
MIDAS (Motorway Incident Detection and Automatic
Signaling) system. The proposed algorithm uses machine
learning techniques to classify LOS data based on the flow of
traffic. The input features that are subject to prediction are a
group of technical indicators. The real-world LOS was
determined by analyzing data from stationary sensors. The
outcomes demonstrate that technical indicators can be utilized
to enhance the accuracy of LOS estimation (Random Forest=
93.1, k-nearest neighbors 92.5, and Support Vector
Machine 91.4). The current work introduces a novel
approach to the selection of technical indicators and their use
as features, which allows for highly accurate short-term
prediction of LOS estimation.
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1- Introduction

In a vehicular ad hoc network (VANET), traffic
conditions can't be accurately assessed without the
help of intelligent transportation systems (ITS). Road
work planning, traffic operations, congestion
management, and assessing traffic queues are just a
few of the uses for ITS traffic measurements. For the
purpose of estimating traffic performance and state,
the Highway Capacity Manual (HCM) defines six
LOS. The HCM offers formulas for calculating LOS
based on traffic volume and road conditions [1]. An
important part of LOS evaluation is the speed, flow,
and density of the traffic [1, 2, 3]. The transportation
agencies often require hourly data on the traffic
situation and LOS for various stretches of freeway,
either in real time or historically fixed location
sensors like remote traffic microwave sensors
(RTMS), loop detectors, laser sensors, magnetic
sensors, license plate recognition (LPR), and video
image systems [4,5] have long been used to collect
traffic data (travel time, speed, density, and flow).
Data collection techniques that rely on stationary
nodes are notoriously costly and space-consuming.
Recently, data-driven ITS has resulted in multi-
source, high-performance, and potent solutions for
transportation systems [6]. The use of "probe
vehicles" and "floating cars" for data collection has
recently received a lot of attention. These strategies
collect information about traffic through the use of
cutting-edge technologies like connected vehicles
(CVs), Wi-Fi, Bluetooth sensors, cellular networks
and smartphones [7,8]. These tools not only open up
new possibilities for collecting crowdsourced data,
but also produce valuable information that can be
used in a variety of transportation analyses, including
those concerned with traffic safety [9,10,11,12],
public transit [13,14], and energy consumption and
emissions [15,16]. Big data is being used in the
transportation sector to propose novel ideas and
solutions that have not been explored before [17].
Predicted traffic flows are a key input into LOS
calculations for highways, and as a result, they can
help drivers and passengers make more informed
decisions about which routes to take. Knowing "when
and where" congestion will occur is helpful for
transportation planning because it allows experts to
allocate resources to the roads at risk of congestion,
which can reduce traffic congestion over time. To
that end, traffic flow prediction [18] [19] [20] has
become a hot topic in recent years as a means to
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estimate LOS due to its substantial advantages over
other devices.

Since VANET uses traffic flow data, many city
governments and departments of transportation
(DOTs) have made deals with data providers like
MIDAS to work together. Flow data has been used in
many different ways, such as to measure performance
and find problems. The focus of this paper is on
MIDAS. In the UK, the MIDAS system is made up of
a network of traffic sensors, mostly inductive loops,
that send information about traffic volumes and
average speeds to a regional control center (RCC).
The RCC can then change variable message signs and
advisory speed limits automatically. When flow data
is collected, it gives us a chance to come up with a
new way to measure LOS based on the features and
characteristics of the data. This study comes up with a
new way to measure LOS on freeways in VANET
that uses technical indicators from flow data. With
this method, you don't need fixed traffic volume
sensors to make new tools for LOS assessment and
hourly traffic status data on freeways. The proposed
method could be thought of as an addition to the
traditional HCM LOS calculation method, which is
based on the amount and speed of traffic. Here’s how
the rest of this paper is put together: In the next
section, "Methodology," the traditional way to figure
out LOS and the proposed way to figure it out are
shown. In this section, we also talk about some
methods for data mining. Then, the data used in this
study are talked about, and then the results of using
the methodology are given. At the end of the paper,
suggestions are made for further research.

1- Related Works

This part reviews the most relevant literature
pertaining to this study, summarizes traffic status and
LOS assessment methods, and discusses the research
gaps. Studies have typically relied on single or
multiple parameters, such as traffic flow [21], traffic
speed [22], and traffic density [23], to explain traffic
status and LOS. Previous research has relied on a
wide variety of methods and data sets, including
sensor readings [24], probe vehicles [25], camera
videos and images [26], CVs [2], and simulation
environments [2][23]. Regarding approach, statistical
modeling [23], artificial neural networks [24,25],
Kalman filters (KF) [25], image processing [27], and
machine learning (ML) [21,26] have all seen
extensive use. Table 1 presents the most relevant
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LOS assessment.

Table 1: is a summary of the different ways that level-of-service (LOS) can be measured.

No. Reference Year Data Index used Method
1 [2] 2017 Simulation (speed, - Average speed - Artificial intelligence
density) - CV penetration rate
2 [22] 2016 Floating Car Data - Average speed - Speed threshold
(speed)
3 [28] 2008 Sensor data (speed, - Travel speed range - Travel time
density, travel time) - Most restrictive condition reliability threshold
- Value of travel time
4 [29] 2019 Wi-Fi probe vehicle - Planning Time Index - Travel time
(Speed, travel time) - Buffer Time Index reliability threshold
- Travel Time Index - Statistical regression
5 [30] 2019 Travel time data - Planning Time Index - Travel time
provided by North - Buffer Time Index reliability threshold
Carolina DOT - Average travel time - Regression model
6 [31] 2020 Simulation (travel - Planning Time Index - Travel time
time) - Buffer Time Index reliability threshold
- Statistical regression

As we've already talked about, the most attention in
the past literature was paid to HCM density-based
LOS. Some studies also used travel time and speed
changes to figure out LOS. No data on traffic flow
has been used to figure out LOS. This study fills a
gap in integrating flow data for LOS assessment with
the help of technical indicators as features. The
results of this study can help agencies figure out LOS
for different segments without having to install new
fixed location equipment.

e To meet the goals of the study and estimate hourly
LOS based on flow data, the following machine
learning classification methods were used:

1- Random Forest (RF): RF is a classification
technique that uses a collection of random decision
trees to make a more accurate prediction than using
either one alone. Here, each tree is constructed
separately from the others. The data is then classified
using a majority vote across all trees, with Gini
impurity serving as the function to measure the
quality of the split at each node [32]. The Gini
impureness at a given node N is defined as:

GIN) =1— (P)? - (P_1)? (10)

where Pi is the proportion of the population with
class label i.

2- Support Vector Machines (SVM): Support
vector machines are a famous classification technique
that uses margins. The SVM algorithm determines,
for each class, the ideal SVM that provides the
greatest distance to other classes. The algorithm
delineates boundaries and assigns classes to data by
computing optimal support vectors [33].

3- K-Nearest Neighbors (KNN): The use of KNNs,
a non-parametric technique, in the classification
process is commonplace. In this approach, the entire
set of training data is mapped onto a feature space
with n dimensions (where n is the number of input
features). The algorithm takes the Euclidean distance
between each observation and its nearest neighbors
and finds the k closest neighbors. After that, it

determines a label based on how often it appears
among the neighbors [34].

3-Materials and Methods

In this paper, a method based on traffic flow data to
determine the hourly level of service-based traffic
status are used. This approach takes into account the
volume of traffic on a given stretch of road in order to
determine the technical indicators that characterize
the state of traffic along that route. The study, which
will be detailed below, relies heavily on data from the
MIDAS traffic flow. This section elaborates on the
proposed algorithm from this research. The various
stages of the proposed method are as follows, as
depicted in the research framework (Figure 1):

Data Collection

|

Exponential Smoothing

'

Feature Extraction

|

Ground Truth LOS

|

Machine Learning

'

LOS Assessment

'

Evaluation

Fig. 1: framework of supervised learning in the current
work
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3.1 Data collection

Massive amounts of data are continuously computed
by MIDAS. Storing MIDAS travel time and traffic
data is the first step in conducting such an
investigation. Data on traffic volumes and travel
times were recorded at 15-minute intervals thanks to
a Python code. Using raw data from the real world
always comes with the risk of encountering problems
like noise and missing values. The data was cleaned
and checked for errors before being used. As far as
possible, missing values and outliers were removed or
identified. The next step was to gather MIDAS traffic
data in order to determine the hourly flow and ground
truth for the level of service. To evaluate the efficacy
of the algorithm [35], MIDAS data of the M25
highway between Junction (13-14) in the United
Kingdom's busiest highway was collected, as shown
in Figure 2.

Horton

Hythe End 'Q'
b .

Fig. 2: Part of the M25 highway chosen for the

study from Open Street Map
3.2 Exponential Smoothing
With exponential smoothing, more importance is
placed on more recent observations, while less
important observations from further back in time are
given weights that decrease at an exponential rate.
Recursively finding the exponentially smoothed
statistic of a series Y looks like this:
So=Y,
fort>0; S, =axV,+(1—-a)*S;_; (1)
where a represents a smoothing factor. Increasing the
friction has the opposite effect, increasing the
roughness. a = 1, so the smoothed statistic is identical
to the raw data. When multiple consecutive
observations are available, the smoothed statistic St
can be computed. Through this process of smoothing,
the model is better able to detect the long-term trend
in the behavior of traffic flows by eliminating the
effect of random variation or noise in the underlying
data. Following the exponential smoothing of the
time series data, a feature matrix is constructed from
which technical indicators are derived.
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3.3 Feature extraction from data

The only variables considered are vehicle travel time
and traffic flow over the course of several days. As a
result, the format can be used to evaluate our input
data (date, traffic flow). These indicators are derived
from the data:

Average True Range (ATR): The ATR
measures the deviation from the average over a given
time period [36] and the size of the range over that
time period. It is formulated as per Eq. (2). The true
range is indicated here by the symbol TR.

1
ATR, = =T, TR, (2)
Where:
TRL' = MAX{An; Bn: Cn} (3)

A, = HighestFlow, — LowestFlow,

B,, = |HighestFlow, — Flowy|

C, = |LowestFlow, — Flow,|

Simple Moving Average (SMA): Adding the
traffic volume of a vehicle fleet over a range of times
and then dividing by the range of times yields the
SMA [37].

SMA, = =¥ Flow,;  (4)

Exponential Moving Average (EMA): EMA is
an abbreviation for "exponential moving average"
[38]. Using Eq. (5), where R is the traffic flow for the
most recent period, D is the smoothing constant equal
to 2/(nu+1), nu is the number of traffic flows in the
SMA estimated by EMA, and EMAu is the EMA for
traffic flows in the past, by using the equation 5
below:

EMA = (R — EMA,) * D + EMA,, (5)
Relative strength index (RSI): The normalized
current flow is a percentage between (0-100). The
name of this oscillator is deceptive because it does
not make comparisons between instruments; rather, it
depicts the current flow in terms of how it compares
to pieces that have been produced within the chosen
lookback window length [32]. The equation for the
RSl is (6).

100

RSI, = 100 — [22 (6)
Where:
1
~y L FL low;—flowy
Dn _ [1 _ 1nn 1 Flowup[flow;—flowp] ] (7)
;Ziﬂflowdown[flowi—flown]

e Rate of Change (ROC): The ratio of the current
flow to the average flow over the window used to
measure the time period under observation [33] is a
technical indicator that measures the relative
magnitude of the two flows. This is the formula for
determining the ROC:

ROC = (Current flow / flow of n bars ago) —

1.0) = 100 (8)

Momentum (MOM): Using data from a
predetermined number of periods in the past, the
MOM indicator evaluates how the current flow
compares to that data. Akin to the "Rate of Change™
indicator, the MOM does not normalize the flow,
resulting in different indicator values for various
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instruments depending on their point values [39].
Equation (9) is used to determine the MOM:

MOM = Current flow — Flow of n periods ago (9)
3.4 Ground Truth LOS:

Level of service (LOS) is a popular metric for
gauging how well a given stretch of road is
performing. With data from flow and road
characteristics, the HCM classified freeways and
highways into six LOS groups. For highway sections,
HCM uses traffic volume as the primary LOS metric

TJPS

[2]. Each LOS's flow is detailed in Table 2 [1]. In this
investigation, the LOS was determined hourly based
on traffic volume collected by MIDAS sensors. The
hourly LOS was calculated using the traffic volume
from Table 2. The LOS that was computed was used
as the standard of comparison. The LOS model
presented below makes use of hourly input data that
was labeled with ground truth values.

Table 2: Description of various LOS derived from the HCM [1].

LOS Flow Description
(veh/hour/lane)
A Under 700 Free flow
B 700-1,100 Reasonably free flow
C 1,100-1,550 Stable flow (acceptable delays)
D 1,550-1,850 When flows are increased, speeds decreased marginally.
E 1,850-2,200 The state of being close to or at full capacity in operation
F Over 2200 Breakdown flow

3.5 Machine Learning Methods

Several machine learning algorithms were put to the
test in this study. The three most accurate methods
(Random Forest, Support Vector Machines, K-nearest
Neighbor, Decision Tree, Boosted Tree, Nave Bayes,
and Multinomial Logistic Regression) were chosen
from a group of seven (Random Forest, Support
Vector Machines, K-nearest Neighbor, Decision Tree,
Boosted Tree, Nave Bayes, and Multinomial Logistic
Regression). Different machine learning methods
were used in this study, so they had to be compared to
find the best one. The preferred model and features
were chosen based on classification accuracy, recall,
precision, f-score, and support. In this study, the ratio
of correctly labeled predictions (LOS) to ground truth
data is measured by accuracy.

4- Experiments and Results

As a first step, this section supplies summary
statistics for all of the data sources used. Next, the
findings of the ML models are shown. All of the
analyses and visuals in this section were created using
the Python programming language. The datasets also
did not contain any missing values that represented
more than one percent of the entire population. When
determining traffic flow data for the M25, factors
such as profile diversity, profile reputation, and
profile geometry validity were considered. The
efficiency of the model allows for a range of values,
which were taken into account while simulating
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traffic on the busiest highway. Additionally, the
model's robustness should be assessed. Naturally, it
would be easier to predict the free flow or breakdown
of traffic that is relatively stable than traffic that is
relatively noisy. From an engineering perspective,
less variation in the data accounts for stability and
means that ML classifiers can make more accurate
predictions. Accuracy, recall (also known as
sensitivity), precision, and f-score are the
performance metrics used to assess the stability of a
multiclass classifier.

4.1. Using Machine
Classification

This research used three different machine learning
models to categorize LOS. This paper reports that
KNN, SVM, and RF achieved the highest accuracy
rates of all the methods tried. To get rid of
unexpected local variation, exponential smoothing
was used in this work. Figure 3 shows that, compared
to the previously used classifiers, the results from RF,
KNN, and SVM are superior. To achieve this goal,
each technique used a grid of hyperparameter values
with varying values to tune hyperparameters and
choose the best model, as described in this Section.
Table 3 displays the results of LOS classification
using data from the M25 highway. Table 3 lists the
various performance metrics used to assess the
reliability of a multiclass classifier.

Learning for LOS
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Table 3: Summary of classification ML methods

Classifier | LOS | Accuracy | Precision | Recall | Fl-score | Support
A 1.00 1.00 1.00 44
RF B 93.16 1.00 1.00 1.00 9
C 0.85 0.92 0.88 25
D 0.88 0.88 0.88 34
E 1.00 0.60 0.75 5
A 1.00 1.00 1.00 44
SVM B 914 1.00 1.00 1.00 9
C 0.81 0.88 0.84 25
D 0.85 0.85 0.85 34
E 1.00 0.60 0.75 5
A 1.00 1.00 1.00 34
KNN B 92.55 1.00 1.00 1.00 7
C 0.78 0.95 0.86 19
D 0.93 0.83 0.88 30
E 1.00 0.75 0.86 4

This study's results show that machine learning
techniques can be used to figure out LOS. The
machine learning techniques used got results of
93.16, 91.4, and 92.55, which is good for a
classification with six categories. The RF did the best
out of the machine learning techniques that were
chosen. For the best model (selected RF), the
hyperparameters were 300 trees, a maximum of 2
features, and a maximum tree depth of 3.

ANN SVM KNN RF

Fig. 3: Comparison of the accuracy achieved with
different classifiers.

100

0 I I

Kalman filter  logistic
regression

Accuracy
w
(=]

4.2. Sensitivity Analysis

Finally, the importance of each technical indicator
was investigated via sensitivity analysis applied to the
hourly random forest model. To identify the input
parameters that most affect robustness and model
performance, a sensitivity analysis is conducted [40].
To conduct this study, each technical indicator was
first removed once from the model input before
checking its accuracy. Since the factors are swapped
out and the model is reevaluated after each iteration,
this method is known as a parametric bootstrap [41].
The results of each eliminated technical indicator are
summarized in Table 4. Not extracting any indicator
from the sensitivity test gave a very high accuracy
(93.16).

By the looks of things, the SMA was the most
important technical indicator, with a drastic drop in
model accuracy (accuracy = 87.28) after its removal.
Once ATR was taken out of the model, the accuracy
was very close to the original (accuracy = 93.11),
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making it the least important parameter. Even though
the accuracy has increased with MOM, the overall
profile of the results is not quite as good as when
using all the technical indicators, so MOM also has
low significance. Based on these results, it seems that
the SMA is a reliable technical indicator for LOS
estimation.

Table 4: Random Forest hourly sensitivity analysis

Parameter removed | Accuracy

None 93.16
ATR 93.15
SMA 88.88
EMA 87.28

RSI 89.74
ROC 92.3
MOM 93.1

4.3. Feature importance

It is hypothesized in this research that LOS
classification accuracy can be enhanced by using data
from technical indicators. Thus, the chosen RF model
was used as the basis for an importance analysis of
the variables involved (Fig. 4). As a result of using
the RF model, it was possible to calculate an average
statistically significant decrease in the Gini index.
The significance of a variable is better captured by a
higher value of this index. Significantly more weight
is given to the SMA and EMA of traffic flow when
calculating LOS. Figure 4 shows that ROC, MOM,
and ATR are all less significant in the classification
of LOS.

40

30
25
20
15
10
5 11 s
0
SMA EMA RSI ROC MOM ATR

Mean Decrease in Gini Coefficient
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Fig. 4: Feature importance plot.

In order to better predict LOS, this research proposes
a new method that incorporates traffic flow data and
machine learning algorithms. However, this research
was not without its flaws. The methodology's inherent
sensitivity to factors like speed and weather
conditions was ignored in this investigation.
However, spatial flow variation was disregarded.
Potentially useful in assessing LOS in the future is
spatial variation, which can be gathered through
further study. It is possible to account for the
difference in flow between the upstream and
downstream sections when estimating LOS. Deep
learning and other sophisticated approaches can be
used for this purpose. In the future, researchers may
be able to capture spatial and temporal variation in
the same study by employing deep neural networks
like convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). By analyzing
whether or not including TI characteristics improved
traffic flow forecasting accuracy, this article assessed
TIs' explanatory power. In general, it has been shown
that Tls may capture the effects of behavioral biases
in traffic flow, resulting in significantly lower
prediction errors when using ML models. Our
research showed that ATR, SMA, EMA, RSI, ROC,
and MOM are the most effective Tls for predicting
traffic volumes. In particular, our findings
recommend including these Tls into the proposed ML
models. Evidence has been found that TI performance
varies by model; However, both SMA and EMA
improved the accuracy of the ML models from
88.88% and 87.28% to 93.16%, respectively.

5- Conclusion

Rapidly expanding quantities of data on traffic flows
in VANET are now available, and machine learning

TJPS

provides a means of analyzing them. This research
provided a fresh approach to using flow information
in LOS evaluation. The UK's M25 freeway between
junctions 13 and 14 was used for the experiment. Six
input metrics (ATR, SMA, EMA, RSI, and ROC
MOM) were generated based on the acquired MIDAS
traffic data. LOS was classified hourly using machine
learning algorithms. The traffic density and LOS
ground truth were estimated using HCM density
criteria, with both calculated using data received from
fixed-position loop sensors. Using a combination of
machine learning and data on traffic flows, this study
shows that level of service in VANET can be
estimated with some degree of accuracy. The
outcomes demonstrated that incorporating technical
indicators as input can considerably raise the
accuracy of the model. And when compared to other
classification approaches on training datasets, RF
performed the best of all (accuracy = 93.16 percent).
It was concluded that this study will encourage others
to investigate the possibilities of technical feature
engineering because this is the first study to apply
technical indicators features to level of service
predictions in vehicular networks.

Although it has been considered that some of the
most common and basic technical analysis indicators
can explain phenomena, more advanced technical
analysis indicators may be better at making
predictions, and this is an area that future study may
focus on.

Appendix A (Hyperparameters)

The hyperparameters of the optimal model are listed
in Table 4 below. It should be mentioned that scikit-
learn [42] is the tool we use to implement machine
learning models.

Table 4: Grid-search selected model hyperparameters.

Classifier Models | Hyperparameters

RF n_estimators=300, criterion= gini, random_state = 0
KNN n_neighbors=5

SVM C=1.0, kernel='"linear'

Appendix B: MIDAS Dataset

Since April 2015, Highway England (HE), which is
in charge of all the motorways and category "A"
roads in England, has sent information about them
every 15 minutes. This is called the "Strategic Road
Network" in England. Major roads in category "A"
are freeways, roads with two lanes, and motorways.
Every minute, a record is made of the Motorway
Incident Detection and Automatic Signaling
(MIDAS) original gold dataset. It had rules about
how the data collected at the site should be recorded.
The most important ones are: publication time, speed
(threshold: 240 km/h), vehicle flows (threshold: 120
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veh/min), occupancy, and headway are reported per
lane. Traffic monitoring equipment on the side of the
road divides the flow of vehicles into five groups
based on the length of each vehicle. These sorted
flows of vehicles were converted to the volumetric
unit of vehicles per minute for each lane and then
added together to get readings for the carriageway
[43]. The important data fields in the MIDAS traffic
flow dataset are shown in Table 5 below. Each model
site's files are made every month. Since Highway
England is in charge of all the major highways,
junctions, and motorways, each file only has flow,
speed, and day logs from those places.
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Table 5: shows the flow of traffic, along with other field names and descriptions that are only found in the
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