Compute Nano topology by used the programing language python

Main Article Content

Nawfal N. Abed
Ali A. Shihab

Abstract

The research aims to Compute the Nano topologies of any set, consisting of five or less elements, through the Python programming language, with finding the necessary algorithms for the solution steps, We explain the mechanism of action: In first we will find the equivalence relations on set, and then we must compute the nano topology, and end know who set was semi-open, alpha-open,beta-open Regular open ,pre open and gamma-open set .

Article Details

How to Cite
Abed , N. N., & Shihab, A. A. (2023). Compute Nano topology by used the programing language python. Tikrit Journal of Pure Science, 28(3), 114–120. https://doi.org/10.25130/tjps.v28i3.1437
Section
Articles

References

[1] Bhuvaneswari, K., & Gnanapriya, K. M. (2014). Nano generalized closed sets in nano topological spaces. International Journal of Scientific and Research Publications, 4(5), 1-3.

[2] Parimala, M., Jafari, S., & Murali, S. (2017). Nano ideal generalized closed sets in nano ideal topological spaces. In Annales Univ. Sci. Budapest (Vol. 60, pp. 3-11).

[3] Bhuvaneswari, K., & Ezhilarasi, A. (2014). On nano semi-generalized and nano generalized-semi closed sets in nano topological spaces. International Journal of Mathematics and Computer Applications Research, 4(3), 117-124.

[4] Parimala, M., Indirani, C., & Jafari, S. (2016). On nano b-open sets in nano topological spaces. Jordan Journal of Mathematics and Statistics, 9(3), 173-184.

[5] Revathy, A., & Ilango, G. (2015). On nano β-open sets. Int. J. Eng. Contemp. Math. Sci, 1(2), 1-6

[6]Hosny, M. (2020). Nano∧ β-sets and nano∧ β-continuity. Journal of the Egyptian Mathematical Society, 28(1), 1-11.

[7] Pankajam, V., & Kavitha, K. (2017). δopen sets and δ nano continuity in δ nano topological space. International Journal of Innovative Science and Research Technology, 2(12), 110-118.

[8] Parimala, M., Indirani, C., & Jafari, S. (2016). On nano b-open sets in nano topological spaces. Jordan Journal of Mathematics and Statistics, 9(3), 173-184.

[9] Nasef, A. A., Aggour, A. I., & Darwesh, S. M. (2016). On some classes of nearly open sets in nano topological spaces. Journal of the Egyptian Mathematical Society, 24(4), 585-589.

[10] Thivagar, M. L., & Richard, C. (2013). On nano forms of weakly open sets. International journal of mathematics and statistics invention, 1(1), 31-37.

[11] Benchalli, S. S., Patil, P. G., Kabbur, N. S., & Pradeepkumar, J. (2017). Weaker forms of soft nano open sets. Computer Math. Sci, 8(11), 589-599.

[12] Parimala, S., & Chandrasekar, V. (2019). Nano δ open sets and their notions. Malaya Journal of Matematik, 1, 664-672.

[13] Sathishmohan, P., Rajendran, V., Kumar, C. V., & Dhanasekaran, P. K. (2018). On nano semi pre neighbourhoods in nano topological spaces. Malaya Journal of Matematik, 6(1), 294-298.

[14] Pirbala, O. T., & Ahmedb, N. K. On Nano Sβ-Open Sets In Nano Topological Spaces.

[15] Revathy, A., & Ilango, G. (2015). On nano β-open sets. Int. J. Eng. Contemp. Math. Sci, 1(2), 1-6.

[16] Parimala, S., Sathiyaraj, J., & Chandrasekar, V. New notions via nano δ-open sets with an application in diagnosis of type-II diabetics.

[17] Manivannan, P., Vadivel, A., Saravanakumar, G., & Chandrasekar, V. (2020). Nano generalized e-closure and nano generalized e-interior. Malaya Journal of Matematik (MJM), 8(1, 2020), 89-98.

[18] Padma, A., Saraswathi, M., Vadivel, A., & Saravanakumar, G. (2019). New notions of nano M-open sets. Malaya Journal of Matematik, S (1), 656-660 .

[19] Sujatha, M., Vadivel, A., Rangarajan, R. V. M., & Angayarkanni, M. (2019, December). Nano continuous mappings via nano θ open sets. In AIP Conference Proceedings (Vol. 2177, No. 1, p. 020100). AIP Publishing LLC.