Study of Rutile TiO2 band structures and optical properties using Density functional theory (DFT)

Main Article Content

Rafea A. Munef
Abdulhadi M. Ghaleb
Ahmed Th. Shihatha

Abstract

In this article, a theoretical analysis to measure the band composition, optical properties and density of states (DOS) of rutile titanium dioxide was conducted via the castep simulation program. Calculations of the first principles were carried out using the super cell (1x1x1) process. The first computation of  concepts was studied by density functional theory (DFT) with a generalized gradient approximation from Perdew-Wang's 1991 (GGA-PW91), local density approximation (LDA) for exchange-correlation energy functional, and (LDA)+U method, implementation of coulomb interactions btween   of ( ) atom  and  of (  ) atom.All experimental values are agreed with our results. The results for LDA and GGA-Pw91 indicated weaknesses in the estimation and far from the experimental results for the properties of the  rutile under analysis, except for the energy band difference, although the estimation data (LDA) + U was in accordance with the experimental values. The optical properties of rutile  was obtained using several methods of exchange correlations, well in accordance with experimental findings and other theoretical evidence.

Article Details

How to Cite
Rafea A. Munef, Abdulhadi M. Ghaleb, & Ahmed Th. Shihatha. (2021). Study of Rutile TiO2 band structures and optical properties using Density functional theory (DFT). Tikrit Journal of Pure Science, 26(3), 75–83. https://doi.org/10.25130/tjps.v26i3.145
Section
Articles

References

[1] Lance, R. A. (2018). Optical Analysis of Titania: Band Gaps of Brookite, Rutile and Anatase.

[2]Dashora, A, Patel, N., Kothari, D. C., Ahuja, B. L, & Miotello, A. (2014). Formation of an intermediate band in the energy gap of TiO2 by Cu–N-codoping: First principles study and experimental evidence. Solar energy materials and solar cells, 125, 120-126.

[3] Gayvoronsky, V., Galas, A., Shepelyavyy, E., Dittrich, T., Timoshenko, V. Y., Nepijko, S. A.,...& Koch, F. (2005). Giant nonlinear optical response of nanoporousanatase layers.Applied Physics B, 80(1), 97-100.[

[4] M. Grätzel, “Dye-sensitized solar cells”, J. Photochem.Photobiol. C: Photochem.Rev. 4 (2003) 145.

[5] Du, X., Wang, Y., Mu, Y., Gui, L., Wang, P., & Tang, Y. (2002). A new highly selective H2 sensor based on TiO2/PtO− Pt dual-layer films. Chemistry of materials, 14(9), 3953-3957.

[6] Kim, S. K., Kim, W. D., Kim, K. M., Hwang, C. S., &Jeong, J. (2004). High dielectric constant TiO 2 thin films on a Ru electrode grown at 250 C by atomic-layer deposition. Applied Physics Letters, 85(18), 4112-4114.

[7] Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., ...&Koinuma, H. (2001). Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 291(5505), 854-856.

[8] Hong, N. H., Ruyter, A., Prellier, W., & Sakai, J. (2004). Room temperature ferromagnetism in anataseTi 0.95 Cr 0.05 O 2 thin films: Clusters or not?. Applied physics letters, 85(25), 6212-6214.

[9] Griffin, K. A., Pakhomov, A. B., Wang, C. M., Heald, S. M., & Krishnan, K. M. (2005). Intrinsic ferromagnetism in insulating cobalt doped anatase TiO 2. Physical review letters, 94(15), 157204.

[10] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.

[11] Chiodo, L. (2010). Maria Garcia-Lastra J.; Iacomino A.; Ossicini S.; Zhao J.; Petek H.; Rubio A. Phys. Rev. B, 82, 45207.

[12] Kang, W., &Hybertsen, M. S. (2010). Quasiparticle and optical properties of rutile and anataseTiO 2. Physical Review B, 82(8), 085203.

[13] Asahi, R., Taga, Y., Mannstadt, W., & Freeman, A. J. (2000). Electronic and optical properties of anataseTiO 2. Physical Review B, 61(11), 7459.

[14] Perdew, J. P., & Wang, Y. (2018). Erratum: Accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)]. Physical Review B, 98(7), 079904.

[15] Perdew, J. P., Burke, K., &Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.

[16] Cardona, M., &Harbeke, G. (1965). Optical properties and band structure of wurtzite-type crystals and rutile. Physical Review, 137(5A), A1467.

[17] Tang, H., Levy, F., Berger, H., &Schmid, P. E. (1995). Urbach tail of anataseTiO 2. Physical Review B, 52(11), 7771.

[18] van Schilfgaarde, M., Kotani, T., &Faleev, S. (2006). Quasiparticle self-consistent g w theory. Physical review letters, 96(22), 226402.

[19] Zhang, Z., & Wang, P. (2012). Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays.Energy &Environmental Science, 5(4), 6506-6512.

[20] Sakthivel, S., &Kisch, H. (2003). Daylight photocatalysis by carbon‐modified titanium dioxide.AngewandteChemie International Edition, 42(40), 4908-4911.

[21] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas.Physical review, 136(3B), B864.

[22] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., &Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 46(11), 6671

[23]Martin, R. (2004). Electronic Structure–Basic Theory and Practical Methods, Cambridge Univ. Pr., West Nyack, NY

[24] Perdew, J. P., Burke, K., &Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.

[25] Wu, Z., & Cohen, R. E. (2006). More accurate generalized gradient approximation for solids. Physical Review B, 73(23), 235116.

[26] Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 44(3), 943.

[27] Liechtenstein, A. I., Anisimov, V. I., &Zaanen, J. (1995). Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 52(8), R5467.

[28] Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J., & Payne, M. C. (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of physics: condensed matter, 14(11), 2717.

[29] Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP.ZeitschriftfürKristallographie-Crystalline Materials, 220(5-6), 567-570.

[30] Umebayashi, T., Yamaki, T., Itoh, H., &Asai, K. (2002). Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids, 63(10), 1909-1920.

[31] Amtout, A., &Leonelli, R. (1995). Optical properties of rutile near its fundamental band gap. Physical Review B, 51(11), 6842.

[32] Mahmood, T., Cao, C., Ahmed, R., Saeed, M. A., & Ahmed, M. (2014). Comparative study of structural and electronic properties of TiO2 at GGA and GGA+ U level. Journal of Optoelectronics and Advanced Materials, 16, 117-122.

[33] Cho, E., Han, S., Ahn, H. S., Lee, K. R., Kim, S. K., & Hwang, C. S. (2006). First-principles study of point defects in rutile Ti O 2− x. Physical Review B, 73(19), 193202.

[34] Mahmood, T., Cao, C., Zafar, A. A., Hussain, T., Ahmed, M., Saeed, M. A., ...& Khan, W. S. (2014). Elastic, electronic and optical properties of baddeleyite TiO2 by first-principles. Materials science in semiconductor processing, 27, 958-965. ,

[35] Yin, W. J., Chen, S., Yang, J. H., Gong, X. G., Yan, Y., & Wei, S. H. (2010). Effective band gap narrowing of anataseTiO 2 by strain along a soft crystal direction. Applied physics letters, 96(22), 221901.

[36] Park, S. G., Magyari-Köpe, B., & Nishi, Y. (2010). Electronic correlation effects in reduced rutile TiO 2 within the LDA+ U method. Physical Review B, 82(11), 115109.

[37]Perdew, J. P., & Levy, M. (1983). Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Physical Review Letters, 51(20), 1884.

[38] Labat, F., Baranek, P., Domain, C., Minot, C., &Adamo, C. (2007). Density functional theory analysis of the structural and electronic properties of Ti O 2 rutile and anatasepolytypes: Performances of different exchange-correlation functionals. The Journal of chemical physics, 126(15), 154703.

[39] Burdett, J. K., Hughbanks, T., Miller, G. J., Richardson Jr, J. W., & Smith, J. V. (1987). Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 109(12), 3639-3646.

[40] Yang, K., Dai, Y., & Huang, B. (2007). Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The journal of physical chemistry C, 111(32), 12086-12090.

[41] Shao, G. (2008). Electronic structures of manganese-doped rutile TiO2 from first principles. The Journal of Physical Chemistry C, 112(47), 18677-18685.

[42] Kowalczyk, S. P., McFeely, F. R., Ley, L., Gritsyna, V. T., & Shirley, D. A. (1977). The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2). Solid State Communications, 23(3), 161-169.

[43] Samat, M. H., Ali, A. M. M., Taib, M. F. M., Hassan, O. H., &Yahya, M. Z. A. (2016). Hubbard U calculations on optical properties of 3d transition metal oxide TiO2. Results in physics, 6, 891-896.

[44] Mahmood, W. (2015). Structural, elastic and optical properties of Ag-doped rutile TiO2.In Advanced Materials Research (Vol. 1101, pp. 66-69). Trans Tech Publications Ltd.

[45] Mahmood, T., Cao, C., Khan, W. S., Usman, Z., Butt, F. K., & Hussain, S. (2012). Electronic, elastic, optical properties of rutile TiO2 under pressure: A DFT study. Physica B: Condensed Matter, 407(6), 958-965.