Theoretical Study of Electronic and Thermoelectric Properties of Ultra-Thin Silicene and Germanene

Main Article Content

Safaa A. Zareed
Najat A. Dahham
Alaa A. Al-Jobory

Abstract

In this study, we used the Non-Equilibrium Green Function (NEGF) and Density Functional Theory (DFT) to analyze the nanoscale electronic properties of silicene and germanene structures, the band structure and Density of State (DOS) for the unit cell of silicene and germanene are found that the energy gap is (0 eV) in both. A comparison was made between silicene and germanene in terms of electrical and thermal properties, by calculating the transmission coefficient T(E) for silicene patterns (Si1, Si2, Si3, and Si4) and germanene patterns (Ge1, Ge2, Ge3, and Ge4). The results show that T(E) decreases with increasing etching depth, which also leads to a decrease in electronic conductivity. Moreover, the value of the Seebeck coefficient (S) increases with increasing drilling depth, and also the sign of S varies from a positive value for (Si1, Si4, Ge1, Ge2, Ge4) to a negative value for (Si2, Si3, Ge3) at Fermi level (Ef) equal to (0 eV). The highest value of the figure of merit is about (1.8) for the Ge4 structure.

Article Details

How to Cite
Zareed, S. A., Dahham, N., & Al-Jobory, A. A. (2024). Theoretical Study of Electronic and Thermoelectric Properties of Ultra-Thin Silicene and Germanene. Tikrit Journal of Pure Science, 29(1), 89–96. https://doi.org/10.25130/tjps.v29i1.1466
Section
Articles
Author Biographies

Najat A. Dahham, Physics Department - College of Science - University of Tikrit - Tikrit - Iraq

 

 

Alaa A. Al-Jobory, Physics Department - College of Science - University of Anbar - Anbar - Iraq

 

 

References

[1] Chen, W., Li, C., Wang, D., An, W., Gao, S., Zhang, C., & Guo, S. (2022). Tunable wideband-narrowband switchable absorber based on vanadium dioxide and graphene. Optics Express, 30(23), 41328-41339.

[2] Tchalala, M. R., Enriquez, H., Bendounan, A., Mayne, A. J., Dujardin, G., Kara, A., & Oughaddou, H. (2020). Tip-induced oxidation of silicene nano-ribbons. Nanoscale Advances, 2(6), 2309-2314.

[3] Dávila, M. E., & Le Lay, G. (2022). Silicene: Genesis, remarkable discoveries, and legacy. Materials Today Advances, 16, 100312.

[4] Kharadi, M. A., Malik, G. F. A., Khanday, F. A., & Shah, K. A. (2020). Hydrogenated silicene based magnetic junction with improved tunneling magnetoresistance and spin-filtering efficiency. Physics Letters A, 384(32), 126826.

[5] Hu, M., Zhang, X., & Poulikakos, D. (2013). Anomalous thermal response of silicene to uniaxial stretching. Physical Review B, 87(19), 195417.

[6] Zhang, X., Xie, H., Hu, M., Bao, H., Yue, S., Qin, G., & Su, G. (2014). Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Physical Review B, 89(5), 054310.

[7] Sankar, I. V., Jeon, J., Jang, S. K., Cho, J. H., Hwang, E., & Lee, S. (2019). Heterogeneous integration of 2D materials: Recent advances in fabrication and functional device applications. Nano, 14(12), 1930009.

[8] Zou, J. H., Xu, X. T., & Cao, B. Y. (2019). Size-dependent mode contributions to the thermal transport of suspended and supported graphene. Applied Physics Letters, 115(12).

[9] Almeshal, A., Al-Jobory, A. A., & Mijbil, Z. Y. (2022). Precise control of single-phenanthrene junction’s conductance. Journal of Computational Electronics, 21(1), 71-79.

[10] Veeravenkata, H. P., & Jain, A. (2021). Density functional theory driven phononic thermal conductivity prediction of biphenylene: A comparison with graphene. Carbon, 183, 893-898.

[11] Hamid, M. A. B., Chan, K. T., Ooi, C. H. R., Zainuddin, H., Shah, N. M., & Nidzam, N. N. S. (2021). Structural stability and electronic properties of graphene/germanene heterobilayer. Results in Physics, 28, 104545.

[12] Krompiewski, S., & Cuniberti, G. (2017). Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons. Physical Review B, 96(15), 155447.

[13] Jose, D., Chowdhury, C., & Datta, A. (2018). A Vision on Organosilicon Chemistry and Silicene. Silicene: Prediction, Synthesis, Application, 1-21.

[14] Zhang, C., Jiao, Y., He, T., Ma, F., Kou, L., Liao, T., & Du, A. (2017). Two-dimensional GeP 3 as a high capacity electrode material for Li-ion batteries. Physical Chemistry Chemical Physics, 19(38), 25886-25890.

[15] Sengupta, S., Furis, M. I., Sushkov, O. P., & Kotov, V. N. (2020). Anomalous transition magnetic moments in two-dimensional Dirac materials. Physical Review B, 102(2), 024432.

[16] Al-Jobory, A. A., & Noori, M. D. (2019). Electrical and thermal properties of GaAs 1− x P x 2D-nanostructures. The European Physical Journal D, 73, 1-4.

[17] Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., & Gao, H. J. (2013). Buckled silicene formation on Ir (111). Nano letters, 13(2), 685-690.

[18] Showket, S., Shah, K. A., & Dar, G. N. (2023). Pristine and Modified Silicene based Volatile Organic Compound Toxic Gas Sensor: A First Principles Study. Physica Scripta.

[19] Watanabe, T. (2021). Microthermoelectric devices using Si nanowires. In Thermoelectric Energy Conversion (pp. 503-520). Woodhead Publishing.

[20] Almeshal, A., Al-Jobory, A. A., & Mijbil, Z. Y. (2022). Precise control of single-phenanthrene junction’s conductance. Journal of Computational Electronics, 21(1), 71-79.

[21] Ahangari, M. G., Mashhadzadeh, A. H., Fathalian, M., Dadrasi, A., Rostamiyan, Y., & Mallahi, A. (2019). Effect of various defects on mechanical and electronic properties of zinc-oxide graphene-like structure: A DFT study. Vacuum, 165, 26-34.

[22] Munef, R. A., Ghaleb, A. M., & Shihatha, A. T. (2021). Study of Rutile TiO2 band structures and optical properties using Density functional theory (DFT). Tikrit Journal of Pure Science, 26(3), 75-83.

[23] Al-Rawi, B. K. (2018). IR-Raman of Silicon Carbide Nanocrystal Cluster and Vibrational Spectroscopy Properties at the PBE/6–31G. Tikrit Journal of Pure Science, 23(4), 67-73

[24] Mijbil, Z. Y., & Al-Jobory, A. A. (2020). Tuning the length-dependent conductance of thiophene and Furan’s derivatives via connectivity. Journal of Electronic Materials, 49(12), 7457-7463.

[25] Algharagholy, L. A., & García-Suárez, V. M. (2023). Defect-Induced Transport Enhancement in Carbon–Boron Nitride–Carbon Heteronanotube Junctions. The Journal of Physical Chemistry Letters, 14(8), 2056-2064.

[26] Al-Jobory, A. A., & Ismael, A. K. (2023). Controlling quantum interference in tetraphenyl-aza-BODIPYs. Current Applied Physics.

[27] Al-Jobory, A. A., Mijbil, Z. Y., & Noori, M. (2020). Tuning electrical conductance of molecular junctions via multipath Ru-based metal complex wire. Indian Journal of Physics, 94(8), 1189-1194.

[28] Trivedi, S., Srivastava, A., & Kurchania, R. (2014). Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. Journal of Computational and Theoretical Nanoscience, 11(3), 781-788.

[29] Coello-Fiallos, D., Tene, T., Guayllas, J. L., Haro, D., Haro, A., & Gomez, C. V. (2017). DFT comparison of structural and electronic properties of graphene and germanene: Monolayer and bilayer systems. Materials Today: Proceedings, 4(7), 6835-6841.

[30] Demirci, S., Gorkan, T., Çallioǧlu, Ş., Yüksel, Y., Akıncı, Ü., Aktürk, E., & Ciraci, S. (2021). Magnetization of silicene via coverage with gadolinium: Effects of thickness, symmetry, strain, and coverage. Physical Review B, 104(22), 224427.

[31] Wirth, L. J., Farajian, A. A., Woodward, C., Mortezaee, R., Osborn, T. H., Pupysheva, O. V., & Belosludov, R. V. (2019). REFEREED JOURNALS. Phys. Chem. Chem. Phys, 21, 1761.

[32] Matsumoto, R., Hou, Z., Hara, H., Adachi, S., Takeya, H., Irifune, T., & Takano, Y. (2018). Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials. Applied Physics Express, 11(9), 093101.

[33] Al-Alwany, N. A., & Al-Jobory, A. A. (2022, October). An investigation of bridge atoms effects on the thermal and electrical properties for both para and meta linked indeno-fluorene single molecules. In AIP Conference Proceedings (Vol. 2400, No. 1). AIP Publishing.

[34] Ferrer, J., Lambert, C. J., Garcıa-Suárez, V. M., Manrique, D. Z., Visontai, D., & Oroszlany, L. (2014). Rodrıguez-Ferradá s, I. Grace, S. Bailey, and K. Gillemot. New J. Phys, 16, 093029.

[35] Nawaf, S., Ibrahim, A. K., & Al-Jobory, A. A. (2023). Electronic structure and optical properties of Fe-doped TiO2 by ab initio calculations. International Journal of Modern Physics C, 34(02), 2350016.

[36] Al-Alwany, N. A., & Al-Jobory, A. A. (2022). An investigation of bridge atoms effects on the thermal and electrical properties for both para and meta linked indeno-fluorene single molecules. In AIP Conference Proceedings (Vol. 2400, No. 1). AIP Publishing.