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1. Introduction

Throughout this research all rings are commutative
with identity and all modules are unitary. Weakly
primary submodule was first introduced in 2005 by
Atani and Farzalipour, where, ‘a proper sub module E
of an R-module H is a weakly primary submodule if
wherever 0 = rh € E forr € R,h € H, implies that
h € E or r™"H < E for some positive integer n’ [1].
And, ‘aproper submodule E of an R-module H is
called a weakly prime if whereverQ #rh e
E forreRheH, implies that he€ EorrH <
E'[2]. ‘It is well known that every weakly prime
submodule is a weakly primary’ [1]. ‘Many auther
studied weakly primary submodules see for
examples’ [3.4]. In this note we generalized the
concept of weakly primary sub module to the concept
weakly approximately primary submodule, where a
proper submodule E of an R-module # is a weakly
approximately  primary if  wherever0 = rh €
E forr ER,hEXH, implies  that h€eE+
Soc(H)or r™"H < E + Soc(3) for some positive
integer n. In this part of the paper we recall some
basic definitions, to be very important in the sequal.
‘The socal of a module 7 denoted by Soc(H) is the
intersection of all essential submodules of H' [5].
‘Where a nonzero submodule N of # is an essential
if N.n L # 0 for all nonzero submodule L of A’ [6].
‘An R-module H is called torsion free if T(H) =
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Let R be a commutative ring with identity, and 7€ be a unital left R-

module. In this paper the concept of weakly approximately primary
submodule are introduced as a new generalization of a weakly primary
submodule, also it is a generalization of weakly prime submodule.
Various basic properties of weakly approximately primary submodules
are studied. Moreover, many characterizations and examples of this
concept are investigated.

{heH:ah =0 forsome0 +a € R}=(0) and I
is called torsion if T(H) = H' [7]. ‘Let E be a
submodule of H and J is an ideal of R define a
submodule [Efa]] ={heH:hj € E} with EC
[EI:?]]and [E‘;/ Rl =E, [IM:/ R] = I' [8]. ‘A zero divisor
on an R-module # is an element a € R for which
there exists a nonzero element h € H such that
ah = 0'[9].

2. Properties of Weakly Approximaitly primary
submodules

This section devoted to introduce the definition of
weakly approximately primary submodule and
illustrate  some  properties, examples and
characterizations of it.

Definition (2.1)

A proper sub module E of an R-module H is a
weakly approximately primary (Brevily wapp-
primary) submodule ofH, if 0 # ah € E,where a €
R,he H, implies that h € E + Soc(H)orac€
JIE + Soc(H) ;g K], that is a™ H S E + Soc(H)
for some positive integer n. And an ideal J of a ring R
is a weakly approximately primary ideal if J is a
weakly approximately primary R-submodule of an R-
module R.
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Remark (2.2)

Every weakly primary submodule of an R-module H
is a wapp-primary submodule of A but the converse
is not true in general.

Proof

Let E be a weakly primary submodule of #, and
0+ ah € E,wherea€ R,he€ H. Since E is a
weakly primary submodule of H, then we have
h€ECc E + Soc(H) or a"H<S ECE+
Soc(#). Thus E is a wapp-primary submodule of
H.m

Consider the following example for the converse

Example (2.3)

Let H be the Z-module Zg, and E =<6 >=
0,6,12,18,24,30,36,42,48,54} be the
submodule of H.Soc(Zg)=<2>N<1>=<2>
(since the only essential submodule of Zg are the
submodule < 2 > and Zg=< 1 >). E is not weakly
primary submodule of Zg, since 0 #3-2 €< 6 >
,3€7,2€ Zg, but 2¢E= <6> and 3¢
VI 6>:,Z6] =V6Z = 6Z

Furthermore E is wapp-primary submodule of Zg,
since 0#3-2€E=<6>"for ,3€Z,2€ Zg,
impliesthat 2 € E + Soc( Zgg )= < 6 > +< 2 >=<
2>=

That is wherever0 # ah € E =<6 >, where
a € Z,h € Zg,, implies that h €< 6 > + Soc(Zg,) =
<6>+<2>=<2>o0ra€

VI< 6> +S0¢(Zoo) iz Zso] = [< 2> 1, Z6o] =
V2Z = 2Z.

Remark (2.4)

Every weakly prime submodule of an R-module # is
a wapp-primary submodule of £ but not conversely.
Proof

Let E be a weakly prime submodule of H, then by
[1] E is weakly primary. Thus by remark (2.2) E is a
wapp-primary. m

Consider the following example for the converse
Example (2.5)

Let 7 be the Z-module Zg and E =< 4 > be the
submodule of Zg. E is not weakly prime submodule
of Zg, since 0 2-2€E=<4>for2€Z2¢€
Zeo» bUt 2@ E=<4>and2 € [<4>:,Z4] =
4Z. On the other hand E =< 4 > is a wapp-primary
submodule of Zg, because whenever0 #a-h € E =
<4>fora€Zhe€Zy, implies that h€eE +
Soc(Zgy) =<4 >+<2>=<2>

or[[E + Soc(Zgy) 1, Zgo] =
VISE>+<2>1,Z60] =[< 2>, Zg] = 2Z.
The following are characterizations of wapp-primary
submodule

Proposition (2.6)

A proper submodule E of an R-module # is wapp-
primary if and only if whenever 0+#1[-FCE.
Where F is a submodule of H, I is an ideal of R,
implies that

TJPS

F CE + Soc(H)orl C J[E +S0c(3) ; H].

Proof

(=) Let (0) # IF € E where I is an ideal of R, F is
a submodule of H with F £ E + Soc(H), implies
that there exists a nonzero x EFandx & E +
Soc(#), we show that I € \/[E + Soc(3{) :x H]. Let
a€l,if 0 #ax € E and E is a wapp-primary, then
a € \/[E + Soc(H) :(x H], that is
1S \J[E+Soc(3):g H]. Thus, we assume that
ax = 0. Now, suppose that aF + (0), that is 0 #
ac € F forsomec € F. Ifc ¢ E + Soc(H) such that
c¢ E. E is a wapp-primary , then
a € \/[E + Soc(#) :(x H]. Thus
1S \J[E+Soc(H):gH]. If cEECS E + Soc(H),
then 0 #ac+#a(c+x)€E and E is a wapp-
primary, it follows that ¢+ x € E + Soc(H) or
a € \/[E + Soc(#) (x H]. Thus
1S \J[E+ Soc(3):g H]. So, we can assume that
aF =0. Now , suppose that Ix # (0), that is
0 # sx € E for some s € I, and since E is a wapp-
primary, then s € \/[E + Soc(#) :x H]. Now, since
0+# sx = (a+s)x €E and E is a wapp-primary, so

Bl s )5 Mitse sefs @€

VIE + Soc(H) :x H], hence |

c J[E + Soc(#) :r H]. So , we can assume that
Ix = (0). Since IF # (0), implies that there exists
¢t EF,bel such that 0+# bc; and 0 # bc, =
b(c; + x) € E, thus we have two cases. Casel: If
be /[E + Soc(H) ;g H] and ¢, + x & E + Soc(H).
But 0#(a+b)(c;+x)=bc,€ E and E is a
wapp-primary, then (a + b) € /[E + Soc(¥) :x K],
hence a€ /[E + Soc(#):x K], it follows that
IS /[E + Soc(3) :r H]. Casell: If be
JIE + Soc(H) ;g K] and ¢, +x € E + Soc(H).
Since 0 # bc, € E and E is a wapp-primary we have
¢, € E+Soc(H) a contradiction. Hence Ic
JIE + Soc(3) :g H].

(<) Suppose that 0 = bc, € E for a € R,h € H,
then (0) #<a><h>CE, so by hypothesis
< h>C E+ Soc(H) or
< a>€.J[E +Soc(H): g H]. Hence heE+
Soc(#) or a € \J[E + Soc(H) :p H]. That is E is a
wapp-primary. =

The following corollaries are direct application of
proposition (2.6)

Corollary (2.7)

A proper sub module E of an R-module H is a wapp-
primary if and only if whenever0#aFSE. Where aeR,
F is a submodule of #, implies that
FCE+ Soc(H) or ac\/[E + Soc(F) :g H].
Corollary (2.8)

A proper submodule E of an R-module H is a wapp-
primary if and only if whenever (0) #IhcE where | is
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an ideal of R and heH , implies that heE+Soc(F#) or
IS[E + Soc(H) : H].
Proposition (2.9)

A proper submodule E of an R-module H is a wapp-
primary if and only if whenever

[EI:z H1S /[E + Soc(H) ;g H] U[Oieh] for he H-(
E+Soc(H)).

Proof

(=) Let ae[E}:?h] where he H'-( E+Soc(H)), implies

that aheE. If ah=0, then a€[0 : h] so
ac,/[E + Soc(H) 1z H] U[Oz:zh]' If 0#aheE and since
E is a wapp-primary with h¢ E+Soc(H’), implies that
ae,/[E + Soc(H) ;g H], SO
ac,/[E + Soc(H) 1z H] U[Oieh]' Thus
[El:zh]g JIE + Soc(3) 1 H] U[Oieh]'

(&) Let 0#aheE where aeR, he 7 with h¢ H-(
E+Soc(H), then aE[Efeh]’ it follows that
ae,/[E + Soc(H) 1z H] U[0:h].  But  O#ah, so
ag[0:h], hence ae\/[E + Soc(H) ;g H]. Thus E is a
wapp-primary submodule of H. m
The following corollary is direct application of
proposition (2.9).

Corollary (2.10

A proper submodule E of an R-module H is a wapp-
primary if and only if for a submodule Fc #-
(E+Soc(¥0)), [E: F]c VIE + Soc(H) (g H] U[0:F] .
Proposition (2.11)

A proper submodule E of an R-module # is a wapp-
primary if and only if whenever acR and n is a
11 1 . . n .
positive integer [E}.[ ale[E + Soc(ﬂ-[)g.{a ] U[Og.{a] .

Proof

(=) Let he[E}:[ a] with h¢ E + Soc(H), implies
that aheE. If ah=0, implies that hc[Og:{ a), so he[ E +
SOC(‘H);%‘H] U[O}:[a] . If O#aheE and E is a wapp-
primary with h¢ E + Soc(H),
thena™ec [ E + Soc(:}()I:2 ] for some positive integer
n. Thus a®HCE + Soc(H), it follows that
a™he E + Soc(H) for all he H-(E + Soc(H)), that
is he[E +Soc(.‘]-()}:[ a™l and hence he[E +
Soc(.‘l-[)}:[ a], so helE +50C(‘7{)7:{ a™] U[O}:[a].
Thus [E}:[ als[E + Soc(}[)}:[a"] U[Oj:{a] .

(&) Let 0O#aheE for aeR, heH with h¢ E +
Soc(H). Since O#ah then h&[O}:[a], implies that
he[ E +Soc(}[)3&[ a™], that is a™he E + Soc(H) for
all he H-(E + Soc(H)). a"e [E+Soc(7—[)):?7-[],

implies that ae,/[E + Soc(#) 3z H]. Thus E is a
wapp-primary submodule of 7. m

The following propositions show that under certain
condition a proper submodule become wapp-primary.

TIPS
Proposition (2.12)

Let ' be an R-module, and E be a proper submodule
of H with [E 4+ Soc(H):xgH] is a maximal
semiprime ideal of R. Then E is a wapp-primary sub
module of .

Proof

Assume that [E + Soc(H) :gr H] is a semiprime ideal
of R, that is /[E+Soc(H):xH]=[E +
Soc(H): g H]. Let O#aheE for aeR, heH with
ag \/[E + Soc(3) :g H]=[E + Soc(3{) :g H]. Since
[E + Soc(H):g H] is a maximal, it follows that
JIE + Soc(3) ;g 3] is maximal, it follows that
R=<a>+,/[E + Soc(¥) ;g H], where <a> is an ideal
of R, that is R=<a>+[E + Soc(H) :xr ], implies that
I=sa+b for some seR, be[E + Soc(H) :x H]. Hence
h=sah+bhe E + Soc(#), so E is a wapp- primary
submodule of H. m

Proposition (2.13)

Let H be an R-module, and E be a proper sub module
of H such that [E + Soc(H) g H]=[E +
Soc(H) :x F] for each submodule F of H with
E + Soc(H) cF. Then E be a wapp-primary sub
module of H.

Proof

Let O#aheE for aeR, he ' with hg¢ E + Soc(H). Let
F=(E + Soc(H))+<h> so E + Soc(¥) cF, then
heF, implies that ae[E}:2 F] and ECE + Soc(H), it

follows that [E}:?F]Q [E + Soc(H):x F]. But by

have [E + Soc(H) :x F]=[E +
Soc(H):xgH], it follows that [Efe Flc [E +
Soc(H) g H], implies that
ac[E + Soc(H) ;g H1S\/[E + Soc(H) ;g H]. Thus
ae,/[E + Soc(H) :x K], that is E is a wapp-primary
submodule of H. m

Proposition (2.14)

Let ' be an R-module and Soc(H) is a weakly
primary submodule of 7. If E is a proper submodule
of H with EC Soc(H), then E is a wapp-primary
submodule of H.

Proof

Let O#aheE for aeR, he . Since EC Soc(H),
implies that O#aheEC Soc(H). But Soc(H) is a
weakly primary, then he Soc(H) S E + Soc(H) or
a"HCS Soc(H) CE+Soc(¥). That is heE +
Soc(H) or ae,/[E + Soc(H) :x H]. Hence E is a
wapp-primary submodule of 7. m

Proposition (2.15)

Let % be an R-module, and A is a maximal
semiprime ideal of R with A H+ Soc(H) is a proper
submodule of . Then AX is a wapp-primary
submodule of H.

Proof

Since AHS AH+Soc(H), then  Ac
[AH+Soc(H) (g H], that is there exists
de[AH+ Soc(H) :x H] and d¢A. But A is maximal,
then we have R=A+<d>, thus I=a+bd for some aeA,
beR, it follows that h=ah+bdh for each he H, implies

hypothesis we
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that he AH+ Soc(H) for each he H. Thus, Hc
AH+ Soc(H), but AH+ Soc(H)c H, it follows
that A X+ Soc(H)=H a contradiction. Since
AH+Soc(H) is a proper submodule of .
Therefore deA and so that we have
[AH+ Soc(H) (g H]CSA, it follows that
A=[AH+ Soc(H) (g H] when is a maximal
semiprime ideal of R. Hence by proposition (2.12) we
have A # is a wapp-primary submodule of 7. m
Proposition (2.16)

Let £ be a torsionfree R-module and E be a
nonzero sub module of Hwith Soc(H)SE. Then
following statements are equivalent:

1. Eisawapp-primary submodule of .
2. [E}:[A] is a wapp-primary submodule of #H for

every ideal A of R
3. [E}:[ a] is a wapp-primary submodule of # for

every aeR.

Proof

(1)=(2): Let 0#ahe [Ey:{A], for aeR, he 7, implies
that a(hA)<E. If (0)# a(hA)<SE, and E is a wapp-
primary, implies that hAZS E+Soc(H) or
ac,/[E + Soc(H) g H]. But Soc(H)SE, then
E+Soc(H)=E, that is hACE or ae/[E:(xgH], it
follows that [E A] or

ae/[E:r H]|S [ E: A] ;R H]. Thus, he [E Alc

[EHA]+ Soc(#) ora" f]-[C[EH Alc [E}[ Al+ Soc(H)
for some positive integer n. Thus hc[E}:[ Al+ Soc(H)

or a“c\/[[E;[A] + Soc(H) :xg H]. Hence [E}:[A] is a

wapp-primary submodule of #. If (0)=a(hA), then
a(hb)=0 for some nonzero beA, implies that aheT(H).
Since  is torsionfree, then T(H)=(0). Thus ah=0 a
contradiction.

(2)=(3): Straight forward.

(3)=(2): It follows easily by taking a=1. m
Proposition (2.17)

Let 7 be an R-module, and E is a proper submodule
of H with Soc(H)<E. Then E is a wapp-primary if

. H .
and only if — Is a nonzero R-module and for every

zero divisor s of }E[ there exists he H and h&E such

that se[0: h] U_[[0 5 7.

Proof
(=) Since s is a zero divisor an R-module % then

there exists a nonzero element h+Ee§ such that
s(h+E)=E, that is sh+E=E, implies that sheE and h&E.
Since Soc(H)CE, then E+ Soc(H)=E, it follows that
hgE+ Soc(H). If sh=0 , then se[0:; h], implies that

se[0:z Rl U [[0 ‘R %]. If O#sheE and E is a wapp-

primary, then s"HCS E+ Soc(3) for some positive
integer n . But Soc(H)CE, then E+ Soc(H)=E, that

iss" HC E, thatis s" ﬂ=(O), it follows that s"e[0 : %],

SO Se /[0 ‘R ] Therefore se[0:z h] U /[0 ‘R ]

(&) Since E is a nonzero submodule, then E is a
proper submodule of H. Now, let O#sheE, seR, he H
such that h¢E= E+ Soc(H), it follows that
s(h+E)=0=E for nonzero element h+E of % . Thatiss

is a zero divisor on % it follows that se[0:z h] U

/ [0:R %]. But 0#sh, implies that

s¢ [0:x h]. So se |[0:g %], it follows that s"%:(O)
for some positive integer n. That is s"HES EC
E+ Soc (%), it follows that se\/[E + Soc(H) :x H].
Thus E is a wapp-primary submodule of 7. m
Proposition (2.18)

Let £ be an R-module, and E is a proper submodule
of H with Soc(H)CSE. If E is a wapp-primary
submodule of H then E[X] (the set of all polynomial
whose coefficients in E) is a wapp-primary
submodule of an R-module F[x].

Proof

Let OH [x]—>(—)[x] defined by
g(hax+hox?+.. . +hx")= (h1+E)x+(h2+E)x +...+(hy+E)X
" is an R- eplmorphlsm where hy,h,,... h,e X and
h{+E, hytE,..., hn+EeE. The kernel of g is obtain by
reducing coefficients module E, implies that

}E[[x ~( )[x] But — is a nonzero R-module, implies

that m is a nonzero R-module. Now let s be a zero

divisor on (%)[x], then there exists a polynomial
(hi+E)x+( hy+E)x?+...+( hy+E)X" in (%)[x] such that
S(( hi+E)x+( hp+E)x*+...+( ha+E)x")=(0). That is
there exists 1<j<n such that s(hj+E)=(0)=E and
h+E#0)=E, implies that s heE and h¢ E +
Soc(H). If s hj=0 then se[0 : h;]. If 0# s hieE with
hig¢ E+ Soc(H) and E is a wapp-primary
submodule of o, implies that
sey/[E + Soc(3) ;g H], that is " HS E+Soc(H).
But Soc(H)SE then E+ Soc(H)=E, it follows that

S"HCS E, so s”%z(O), thus Sc/[O:R%]. Hence
se[0: k] U _[[0 iw 2] Since Z(D)[K], it follows

that  se[0:x h;] U /[o e [x]].

proposition (2.17) E[X] is a wapp-primary submodule
of H[x]. m

Proposition (2.19)

Let H be an R-module, and E is a proper submodule
of H with [H:(xF]€[H :xE+ Soc(H)] and
E+ Soc(H) cF for each submodule F of H. If
[H :g E+ Soc(H)] is a primary ideal of R, then E is
a wapp-primary submodule of 7.

Proof

Therefore by
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Let OaheE, for aecR, he H, with h¢ E+ Soc(H).
Since E+Soc(H) is a proper submodule of
E+ Soc(H)+<h>=F and [FrH]Z[E+
Soc(H) :g H], implies that there exists se[F :z H]
and sé¢ [E + Soc(H):xg H], that is sHC<SF and
SH & E+ Soc(H). If sHCF, then r sHCr(E +
Soc(H)+<h>)CE + Soc(H), it follows that
ISe[E + Soc(H):x H]. But [E + Soc(H):z H] is a
primary ideal of R and s¢ [E + Soc(H):z H], then
I’e\/[E + Soc(H) :x H]. Hence E is a wapp-primary
submodule of . m

Proposition (2.20)

Let H be an R-module, and G,F are proper
submodule of H with FESG. If G is a wapp-primary

submodule of £, then% is a wapp-primary

submodule of %

Proof

Let 0¢a(h+F)=ah+Fc% , where he %, h+Fe§ , aeR, it
follows that abe G. If ah=0, then a(h+F)=0, gives a
contradiction , thus O#aheG. Since G is a wapp-
primary submodule of #, then he G+ Soc(H) or
a"HCS G+ Soc(H), that is h+FeEESUD o oo

ggw, it follows that h+Fe§ 4 Grsocl) o 6

F F
H H _G G+ Soc(H G H
+Soc(%) or a" Lo + T £ 4 5oc(Z). That

7]

. G H G H
is h+FcF + SOC(F) or aE\[[F + Soc(;) g —]. Hence

G . - H

- Is a wapp-primary submodule of ——. m

Proposition (2.21)

Let geHom (A, H') be an R-epimorphism and E is a
submodule of # such that g *(E) is a wapp-primary
submodule of H. Then E is a is a wapp-primary
submodule of 7.

Proof

Let g (E) is a proper submodule of #, then g
YE)# £, that is there exists he  such that he g ™(E),
so g(h) €E, thus E# £, so E is a proper submodule of
H'. Let O#aheE and hg¢ E + Soc(H’), for aeR,
h'e 7. Since g is an epimorphism then there exists
he # such that g(h)= h, so 0#ah=a g(h)= g(ah)cE.
That is 0#ahe g "(E) with hg g *(E)+ Soc(#). But g
“Y(E) is a wapp-primary submodule of #, it follows
that ae,/[g~1(E) + Soc(#) :x K], that is 8" H<S g~
YE) + Soc(H). To show that a" H’S E + Soc(H).
Let hye H but since g is an epimorphism, then
gh)= h, for some he#. Thus a"he g °
YE)+ Soc(H), implies that g(a"hy)= a"g(h)= a"
hyeg(g (E)+g(Soc(H))S E + Soc(H’). That is
a"e\/[E+ Soc(H):x H’]. That is a"HCSE+
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Soc(H”). Thus E is a wapp-primary submodule of
H.m

Proposition (2.22)

Let geHom (A, ) be an R-monomorphism and E
is a wapp-primary submodule of H . Then g *(E) is a
wapp-primary submodule of 7.

Proof

Let O#ahe g *(E) for acR, he H with hg g -
Y(E)+ Soc(H), that is 0# g(ah)=ag(h)e g(g "(E))=E, it
follows that 0# ag(h)eE. But E is a wapp-primary
submodule of ', implies that 8" H'C E + Soc(H”)
for1 some positive integer n. To show that a" g (H )<
g7(B)

+Soc(H). If hie g Y(H), then g(h)e H . Thus a"
g(hy)=g(@" hy)e E + Soc(3"), implies that a" h;e g -
YE)+ g (Soc(H)), it follows that a" g Y(H)c g
YE)+ Soc(H). Thus g (E) is a wapp-primary
submodule of H. m

Proposition (2.23)

Let H be an R-module, and G,F are submodules of
H with GESF and F is an essential submodule of H.
If G is a wapp-primary submodule of H, then G is a
wapp-primary submodule of F.

Proof

Let 0£aheG, where aeR, heFS H, implies that he H.
Since G is a wapp-primary submodule of #, then
heG+Soc() or ae,/[G + Soc(H) :x H]. But F is an
essential then by [5,p] Soc(E)= Soc(H). Thus he
heG+Soc(F)or

ae\/[G + Soc(F):g H]S/[G + Soc(F):g F]. Hence
G is a wapp-primary submodule of F. m

Proposition (2.24)
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is not contained in G and Soc(#)<F. If G is a wapp-
primary submodule of #, then FNG is a wapp-
primary submodule of F.

Proof

Since F is not contained in G, then FNG is a proper
submodule of G. Let O£ahe FNG, for aeR, heFS I, it
follows that O#aheF. Since G is a wapp-primary
submodule of #, implies that he G + Soc(H) or
aA"HE G+ Soc(H), thus he( G+ Soc(H))NF or
a"H<S(G+ Soc(H)) N F for some positive integer
n. Since Soc(H)<SF, it follows by modular law
he(FNG)+( FN Soc(#)) or a"HS(FNG)+( Fn
Soc(#)). Then by [10, coro.9.9] we have Fn
Soc(H)= Soc(F). Hence he(FNG)+ Soc(F) or
a"H<S(FNG)+ Soc(F) that is a"c[(FNG)+
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that a"FES(FNG)+ Soc(F). Hence FNG is a wapp-
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