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ABSTRACT

Considering that finding the bounds for the coefficients of
the Taylor-Maclaurin series expansion of bi-univalent
functions is one of the important subjects in geometric
function theory that has attracted the attention of many
researchers in the last few decades, we also take a step in this
direction. Finding such bounds is the main focus or, more
clearly, the main problem of our work. In this article, we
study the subclass Hy(n,y,¢) of bi-univalent functions
which is defined in the open unit disk D. Furthermore, we
obtained the upper bounds estimates for the first coefficients
la,| and |as| of the functions in this category by using
subordination method. From the main result of the article
(Theorem 2.1), special cases have been derived that improve
some the results of previous articles.
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Introduction

In [1] carried out research on the category of bi-
univalent functions and demonstrated that |a, | <
1.51 for every bi-univalent function f which in turn
resulted in further research into the bounds of bi-
coefficients. Then, [2]

univalent functions’

displayed maxycy|a, | =§ in 1969. Afterwards, in

[3] proved that |a,| < V2. [4] has recently revived
interest in the research of bi-univalent functions and
offered a spearheading work in this regard in 2010.
Several different subclasses of the bi-univalent
functions category have been presented and
investigated similarly by a large number of authors
who followed the project of Srivastava et al. in a
substantial number of works. A number of authors
investigated categories of bi-univalent holomorphic
functions and discovered estimation of the
coefficient's estimation issue for any of the Taylor—
Maclaurin coefficients |a,|and |az| for functions
in these categories [5, 6]. Also, they provided some
fascinating instances of characterization and
functions of this category. Another exciting and
new work is done by [7]. They obtained the
estimates for a subclass

coefficient new

gf(H, 2u,v) of analytic functions that is defined
by quasi-subordination and the other exciting and
new work is done by [8] they obtained the
coefficient estimates for a new subcategory
Hs (n, B,®) of analytic functions that is defined by

subordination.

Using the method of convolution on the
category of holomorphic functions which is defined
on the open unit disk D ={z € C; |z| <1}, [9]
indicated the operator R as follows:

RM(2) = f(2) + ————
(1 — Z)/1+1’
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where, f is a holomorphic function which is
defined on the open unit disk D, z € D, 2 € R and
A> -1

ForA=n € Ny = N U{0}, we get

n-1 ()
PP Gl <)
n!

The expression R"f(z) is said to be an nt*-order
Ruscheweyh derivative of f(z) and the sign * is
used for Hadamard product (or convolution). We
can deduce that [10]

R 'f(z) =z + Z o(n, k)a,z",
k=2

where,

r'n+k)
k-D'T(n+1)"

o(n k) =

In this article and inspired by the mentioned
works, we first define a subclass of bi-univalent
functions in the open unit disk D by using the
Ruscheweyh operator and subordination and then
we study this subclass. One of the most important
results of this article is finding an upper bound for
the coefficients |a, | and |az | of the functions of
this category, this result is presented in Theorem
2.1 and some corollaries that are deduced from this

theorem.

Suppose that € is the set of all complex
numbers and A denotes the category of the
functions f that are holomorphic in the open unit
disk D and normalized by the conditions f(0) =0
and f'(0) = 1.

To put it in another way, the Taylor-Maclaurin

series expansion of the function f in A is a special
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form of the power series, which can be stated as

follows:

f@=z+ ) azt, z€D (1.1)
; .

and we note

o
where, a; =1 k(o); k=234,:-

that a, = 1.

Definition 1.1. [11] A function f:D — C is called
univalent function in D if it is holomorphic and

injective (one-to-one) in D, that is,

f(z1) # f(z), (21,2, €D, 2z # z;).

In this paper, we will indicate the category of all
functions that are univalent in D by § which is a
subclass of A introduced by [11, 12].

For two holomorphic functions f and g in D, we
state that the function f is subordinate to the
function g, and we write f(2) < g(2), if there is a
Schwarz function w (i.e., a function that is
holomorphic in D with w(0) =0 and |w(z)| < 1
in D), such that f (2) = g(w(z)) for any z
belonging to D. Specifically, let the function g is
univalent in D, then f (z) < g(z) if and only if

f(0) = g(0)and f (D) S g(D) (see [13]).

The familiar Koebe-one-quarter theorem [11]
asserts that for any univalent function f in §, the

image of the open unit disk D under f includes a
disk with radius i Consequently, each univalent

function f has an inverse f~1, such that:

f(f()=2z (zeD) and
i w) =w (wl <n(:in() 22).

In some disk, the following form is the inverse of

the series expansion of the

82

TJPS

frw) =w+ ) bhwk (1.2)

function f about the origin:

The best bound for all |b,| in (1.2) is provided by

the inverse of the Koebe function (see [14]).

We know, near the origin, every univalent

function f(z) and its inverse f~1(w) satisfy:

fFFTw) =w
in other words,

w = fTTW) + a[fTTWI +as[f WP
+ (TN

fIW) =w - a[f 7T WP - as[f T WP
— (1.3)

or by substituting (1.2) in (1.3), we obtain
gw) = f1w) =w — auw? + (2a3 — az)w?
— (5a8 — 5aya; + a,)w*
4 (1.4)
Utilized the idea of subordination to define the
subcategories of convex and starlike functions by
[15]. In this case, we assume that the holomorphic
function ¢ has a non-negative real part in D, (D)
»0) =1,
@'(0)=J; >0, and ¢ is of the form of power

is symmetric about the real axis,

series extension

0@ =1+ J1z + J,z2° + J323 +-+; z
€D (1.5)
In [15], introduced the following categories of

starlike and convex functions:

5(p) = {f €4 fo(—g) <o) z€ D},
and
2f"(2)

C’((p)={f€c/l; 1+ < ¢(2), ZED}.

f'(2)
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For o) =12 (-1<B<A<1), the

categories §*(¢) and C(¢) will be decrease to
Janowski starlike and Janowski convex functions
categories S*[A, B] and C[A, B], respectively. It’s
worth noting that if 0<4§ <1, then §*[1-—
28,—1] = §*(8), namely, the category of starlike
functions of order 6 and C[1 — 26,—1] = C(6),
namely, the category of convex functions of
order §. In particular, the popular categories of
convex and starlike functions in D are §* = §*(0)
and C = C(0), the

characteristics of the category S, = §*(e?) were

respectively. Furthermore,

investigated by [16].

A function f € A is called bi-univalent in D if both
f and £~ are univalent functions in D. Assume
that Y denotes the category of all bi-univalent
functions in D, presented by the Taylor—Maclaurin
series extension (1.1). The followings are instances

of bi-univalent functions in }_ [17]:

1+z>

1
and Elog(1 —

z log(1
11—’ —log(1-2),

Nevertheless, the well-known Koebe function

z
(1-2)?

and the functions
1 z
2Tt 1o
which are the members of S, are not included in .
The goal of this paper is to derive bounds for the
Taylor-Maclaurin  series coefficients and

the

la,|
las| of every function f in subclass
Hs(n,y,9) of bi-univalent functions. Also, the
bounds for the first two coefficients of f~* are
given. A distinct technique involving subordination
has been used to investigate the object of the
article. We begin by introducing the category
Hy(n, v, ¢) where ¥, represents the set of all bi-
univalent functions in D, n is the order of the
Ruscheweyh operator of f(z), y is the nonnegative
coefficient of the second order derivative of

Ruscheweyh operator of f(z) and ¢ is the
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holomorphic function of Ma and Minda type given
by (1.5).
Definition 1.2. A function f € ¥ given by (1.1) is
called in the category Hy (n,y, @) if
(R () +vz(R"f(2))" < 0(2); z€D,

and

R"gW)) +yw(R*gW))" < p(w); w €D,
wherey =0, g = f~1and ¢ is the function given
by (1.5).

Now, if P represents the family of all functions
q(z), which are holomorphic in D such that
q(0) =1 and Re(q(z)) >0 (z€D) and they

have the series expansion of the form:

q(z) =1+ Z cpz"
i=1

The following outcome, which

(1.6)

is known as
Caratheodory’s lemma, is required to determine the
results of the paper.

Lemma 1.3.[16] If g belongs to P, with q(z) given
by (1.6), then |c,| < 2 forn > 1.

2. Results and Discussion
Theorem 2.1. If f € Hy(n,y, ), then

la|

3 JiCs + Uz
T I3 +29)0(n,3) + 4(1 +1)?(0(n, 2))’

and

o) < J1CUs + 12
P T340+ 20)0(,3) + 41 +1)2(0(n,2))

i
3(1 + 2y)a(n,3)°

Proof. Suppose that f € Hy(n,y,¢) and g = 1,
then by definition of subordination there are

Schwarz functions u, v: D — D, such that
(R"f(2) +yz(R*f(2)" = ¢(u(@); z€D,
and

(R gW)) +yw(R*gw))" = p(v(w)); w
€ D.
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Define the functions g, and g, by

1+u(z)

q:1(2) = = pEy =1+ ¢z+cz>+-+ and
1+v(z)

q,(2) = @ =1+d,z+d,z% +-

Or, in other words,

u(z) = 2@-1 %(clz + (cz

_i)ZZ_F...)
2

q1(2)+1
and

@1 _ _ a2,
v(z) = @@+ (dlz+ (dz 2)2 + )

Then g, and g, are holomorphic in D with g, (0) =

1 = g,(0). Now, since u, v: D — D, the functions

q, and g, have a non-negative real part in D, and

by Caratheodory’s lemma |¢;| < 2 and |d;| < 2 for

each i € N. Since

(fR"f(z))' =1+20(n,2)a,z+30(n,3) azz?

+ e

and

yz(R"f(z))” =2yo(n,2) ayz + 6yo(n,3) azz?
+ o

S0,

(R"f (@) +vz(R*f ()"
=1+21+y)a(n2)a,z
+3(1 + 2y)o(n, 3)asz>
+ o (2.1)

On the other hand
q1(z) — 1)
u\z = —_—
o(u(2) <p<q1(z)+1
1
=1 + 511612

1 c1

+ 511 €2 — > + ]2C1

+ e (2.2)
Again, by using (1.4) we have
Rigw) =w — a(n,2)a,w? + o(n,3)(2a3 —
a;)w? + -,
(R"g(w))’ =1-20n,2)a,w

+30(n,3)(2a% — az;)w? + -+,

and
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yw(R"g(w))” = —2yo(n,2)a,w
+ 6ya(n,3)(2a3 — a;)w? + -+

So,

(Rmg(W)) +yw(R"g(w))"
=1-21+y)a(n, 2)a,w
+3(1 + 2y)a(n,3)(2a3
— a3)W2 + .-,

On the other hand
q,(w) — 1)
v(w)) = _—
(,0( ( )) (p<CI2(W) +1
1
= 1 + E_]ldlw

1 d? 1 5 .
+ 511 dz‘? +Z]2d1 w

+ oo, (2.4)

_ (‘h(z) - 1>
BAVAOES!

(2.3)

Now, since

(R () +yz(R"f(2))"
then, (2.1) and (2.2) yield
1+2(1 +y)a(n,2)a,z +
3(1+ 2y)o(n,3)azz? + -
(%]1 (Cz - ?) + ijch)zz + .

Again, since

= 1+§]1C12+

n ’ n "o q2(W) -1
(R"gW)) +yw(R"gw)) = w(—qz(w) - 1)
then, from (2.3) and (2.4) it follows that
1-2(1+y)o(n,2)a,w +

3(1 4 2y)o(n,3)(2a2 — az)w? + - =

%]1d1W + ( 1 (dz ) + ]2d1)

Therefore,

1+

1
21 +vy)o(n,2)a, = Ejlcl, (2.5)

3(1 + 2y)o(n,3)as

1 c1
2]1 C — > + ]2C1 (2.6)

1
2(1+y)o(n,2)a, = _§]1d1

2.7)

and
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3(1 +2y)o(n,3)(2a3 — a3)

1 a2\ 1
2511 d2_7 +Z]2d1'

or

6(1+ 2y)o(n,3)az —3(1 + 2y)o(n, 3)a;

1 d?
= 511 d, T

1
+—J,d? (2.8)
4
From (2.5) and (2.7) we get
C1 = _dl (2.9)
8(1+y)?(0(n, 2))2a3 = - J2d? (2.10)

Now, apply (2.6), (2.9) and (2.10) on (2.8) to obtain
6(1 + 2y)o(n,3)a’

1 ct\ 1
2511 2 _7 +Z]2C1
1 d? 1 )
+§]1 d, -5 +Z]2d1-
Then,

1
6(1 +2)0(n,3)03 +5 /13

1 1
= 511(62 +dy) + E]zdh

and therefore,

a3

_ Ji(e, +dy) +J1JodE
12,1+ 2y)o(n,3) + 16(1 +¥)2(a(n, 2))?

In this step we have

|az|2

< ]12|C2+d2|+]1]2|d1|2
T 43,1 +2y)a(n,3) +4(1 +y)2(c(n, 2))?]”

By Lemma 1.3

la,|?
< 4]+ 4], |
4 [3 J1(1+2y)a(n,3) + 4(1 +v)*(a(n, 2))2]

and hence
las|
< J1(U+ 2D
3L+ 2)0(n,3) +4(1 + )/)2(0'(11,2))2
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Next, in order to find the upper bound for |as|, by
(2.8) (2.6)
computations lead to
6(1 + 2y)ao(n,3)as

subtracting from and further

1
=6(1+2y)a(n,3)a; + 511(62

—dy),
which gives

_6(1+21)0(1,3)a3 +3/1(c, — dy)
% = 6(1+ 2y)a(n, 3) ’

and these yields

e = a2 + J1(c; — dy)
3T 12+ 2p)0(n, 3)

It follows that

o] < J1CUs + 12
T 311 +2y)0(n,3) + 41 +1)2(0(n, 2))°

JA
T3 2)0m3)

|

Given (1.4) b, = —a, and the resulting upper
bound for |a,| is also true for |b,|. Again, since
b; = 2a3 — a5 to obtain the upper bound for |bs|
we need brief calculations which we will deal with
at the next result. Therefore, at this step, we will
provide upper bounds for the first two coefficients
of the Taylor-Maclaurin expansion of 1.

Corollary 2.2. If f € Hy(n,y, ), then

|2a% — ag|

3 U + 112D
3,1+ 2y)a(n,3) + 4(1 +y)2(0(n, 2))

1
T 3a+2p)0m3)

Proof. By the proof of the Theorem 2.1 we have

2

2a% —a;
_ ]12(C2 +d;) +]1]2d%
12,(1 + 29)o(n,3) + 16(1 +1)?(6(n,2))°

J1(d; — ¢3)
12 (1 + 2y)o(n,3)

Then, clearly, by using Lemma 1.3 we obtain
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|2a% — ag|

< LU+ 112D
C3,(1+2p)a(n,3) + 41 +¥)2(0(n,2))

1
T 3a+2p)0m3)

2

]
Considering the Taylor-Maclaurin series of e#, a
special case is obtained by taking ¢(z) = e in the
Theorem 2.1. The details are shown below.
Corollary 2.3. Consider the function f €
Hy(n,v, e?) then

3
|a2| < 2
6(1+ 2y)o(n,3) +8(1 +¥)2(a(n,2))

and

3
|a3| < 2
6(1+ 2y)o(n,3) +8(1 +¥)2(c(n,2))

1
T 3a+2)0m3)
Proof. Let ¢(z) = e?. Since

ez=1+Z+lZ2 +lZ3+---
2! 3!

so,by(15) /=1, J,=

we obtain

%, and by Theorem 2.1

oyl < > :
6(1+2y)a(n,3) + 8(1 +y)%(c(n,2))

and

|a3| < k 2
6(1+2y)a(n,3) +8(1 +y)*(c(n,2))

1
T 3a+20m3)”

Now, if we take

1+ (1 —-28)z
—
in the Theorem 2.1 then, J;, = J, =2(1 —§) and

we get another result.

¢(2) = ;0<68<1, z€D,

Corollary 2.4. Consider the function f €

1+(1-26)z

f]-[z(n,y, )Where,0S6<1andze7_)

then,
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la|

3 4(1-0)2
3(1—8)(1 +2y)a(n,3) + 2(1 +1)?(a(n, 2))"

and

las|
- 4(1 - 6)2
31 = 8)(1 +2y)a(n,3) + 2(1 + ¥)%(a(n, 2))
2(1-6)
3(1 + 2y)a(n,3)°
Proof. We note that

1+(1-26)z
1-z

-, 0<6<1,z€D.
So, by (1.5) J1 =], =2(1—4), and applying
Theorem 2.1

2

=1+4+2(1-8)z+2(1-6)z%+

la|

3 4(1-106)?
T 3@ =81 +2y)0(n,3) +2(1 +1)?(0(n, 2))°

and

las|
- 4(1-6)?
31—=8)1 +2y)o(n,3)+2(1 + y)Z(a(n, 2))
2(1-6)
3(1 + 2y)a(n,3)°

2

Finally, upon letting
14+ 2\%
<P(Z)=(:) ;0<a<1l z€D
we obtain the following new result.
Corollary 2.5. Consider the function f €
1+z

Hy, (n,y, (E)a) ;0< a <1,z €D then,

la,|

< 20°(1+ )

~J3a(1+2y)0(n,3) +2(1 + )?%(a(n, 2))2
and

2a%(1+ a)
las| < 2
3a(1+2y)o(n,3) +2(1 +y)*(c(n,2))
2a
.
3(1 + 2y)a(n, 3)

Proof. Since
(g)a =1+ 2az + 2a22% + -,
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then by (1.5) J; = 2a, J, = 2a? and applying
Theorem 2.1

las|

< 20°(1 + @)

"~ J3a1+2y)0(n,3) + 2(1 + )2 (0(n, 2))*
and

20%(1 + )
|a3| < 2
3a(l+2y)o(n,3)+2(1 + y)z(o(n, 2))
2a
T 3a+2)0m3)

3. Conclusion:

In this article, our investigation is due to the
fact that we can find interesting and useful
applications of special functions and especially bi-

univalent functions .The new bi-univalent function

subclasses Hy(n,y, @) in the open disk D, was
examined in this paper. We explored the
coefficients of |a,| and |as]| in the Taylor series of
them. Additionally, we discovered some corollaries
and implications of the primary findings.
furthermore, the provided bounds improve and
extend some previous results.
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