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Introduction

The conjugate gradient method(CG)plays an

important role in solving the unconstrained
optimization problem .In general, the method has
the following form [1]
min f(x) xeR™ (1.1)

Where f:R"™ R is continuously differentiable
the(CG)method is an iterative method of the form

(1.2)

Where x,, is the current iterate point, and a,, > 0

Xyr1 = Xy +aydy, u=012..

The step size, d,, is asearch direction where it is

defined as:
—Ju u=20
d, = { 1.3
—Gu+1 T ﬂu du uz1 ( )
Where g, = Vf(x,) .ByeR conjugacy scalar

parameter [2].
Some well-known formulas are given as follows
[31:

T
HS _ Ju+1Yu
D =

(1.4a)
diYu
Fu+19u
MR = (1.4b)
“ 988y
T
Dy _ Ju+19u+1
= — 1.4
“ dly, (14)
g1y
LS u u
=" 1.4d
u _dEgu ( )
“gu+1”2
D = 1.4
u _dgl‘gu ( e)
gh+1y
PR = 22— (1.41)
! gigu
New Method and its Algorithm:
dys1 = —Gus1HBusu — OV 2.1)

Is general three terms direction forms formulated
where the parameters [=any standard conjugant
parameter

(FR), (PR), (HS), (LS), (DY), (DX), and (BA)

with others and 6, can we see in many three-term
conjugate gradient algorithms[4]

Ay Gus1

9% Gu

dys1 = —Gus1 + ﬁszdu - Ju+1 (2.2)

Where

104

dT
9 = ufu+1 (2.3)
uGu
Ju+1dy
u
dyus1 = —Gusr + BtIZISdu T u (2.4)
uu
Where
— dug15+1
di Yu

Another general TT direction is parametrizing with
A by:

dys1 = —Gusr + stdu — Ay, A>1 (2.5)
4 dy G4
:u - 9 - dT
uVu

We are interested in the TT formulas given by
(2.5) for the control parameter founded (1), and in
other to derive our methods, we start from equation
(2.2), but we use DY instead to FR, so we
equivalence (2.2) by (2.5), with DY

T
UJu+1

BDYd _
Y glhgu

Ju+1

= By dy — 10y, 9y41 (2.6)
Setting SPYwhat equal and 0 as (2.3)

T al, aj
Ju+19u+1 _ ugu+1g — ,BNer — ) MGut1

aly, % glg, Jutt T v Tu 4 gu
Ju+1

Multiplying both sides of the above equation with

direction d¥ at u — th iterate we get

| Gusill® dT d. — (dj, gus) (@] Gusr)
diy, " 9% 9u
= pYevdid,
_A(dﬂ Gu+1 )(dﬂ Gu+1)
9% 9u
New : _dhgy
Were B,/¢" asin (2.6) and 6 = gul?
”gu+1”2 _ (dﬂgu+1)(dggu+1)
iy (gl g.)(d%dy)
— gNew _ 3 (dﬂgu+1)(d£gu+1)
“ (9t.9.)(d%dy,)
(d7,.9.)°
N =B+ (A - 1) 27
w=h e (27)
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Were || || Euclidean norm. Then according to

general (2.1) and (2.5) and our derived parameter of

conjugate (2.6) will be

= —Gus1 — BL dy

Where g% as in (2.7).

3.1 The DY-TT CG-Algorithms:
Stepl: Given an initial point x, € R™ and positive

parameters, Y = 0.2, 0<§ <05andf <o <1.

New
du+1

(2.8)

Set the initial search direction d, = —g, and let
u=0.

Step2: If ||g,ll < &, then stop.

Step3: Determine step length a,, > 0 satisfying the
Strong Wolfe Condition (4) with computing
Xyp1 = Xy +<, dyy

Step4: Compute the new search direction (2.8),
where the conjugacy parameterf, are known in
(2.7).

Step5: If 1gi+19ul = @llgusall?, then go to Step
(1) else continue. (this is Powell restart)[5].

Step6: Letu = u + 1 and go to Step (2).

3.1 The Descent Property of the New formals

We will mention the proof of the descent property
of the new proposed formula, the conjugated
descent property algorithm.

Theorem 3.1 (decent property):

Suppose that the step-size a, hold the Wolfe
condition. The direction of the search d¢% with
the parameter SN given in equation (2.8)
satisfying the descent property forall u > 1.

Proof: we began by multiplying the direction (2.8)
by 9341

T New __ T New T
Jur1du$1 = —Gu+1Gus1Bu " Gu+1du

Replace the conjugacy parameter with its equal to

i1y = _95+19u+1+[ﬂgy + (-

(dlgw)? ] T
d
)uguuzuduuz url®u
T .d =—gT +M T d + (-
gu+1 u+1 gu+1gu+1 yz:du gu+1 u (
(a%gw)?
) 5= gus1dy (3.1)

g2l qull®
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if the step length a, is chosen by an exact line
search which requires

Gur1dusr = 0.

then the proof is complete. If the step length a,, is
chosen by inexact line search which requires
gr1dy,41# 0 the first two terms of equation (3.1)
are less than or equal to zero because the parameter
of (DY) satisfies the descent condition, and the

third term is less than or equal to zero, because

dT 2
( Iégu) > > 0 and A<1, so,
[lgull®llgull

Gu+1dur1 <0

On some studies of the CG-methods, the sufficient

descent or descent condition plays an important

role, but unfortunately sometimes, this condition is

hard to hold [6].

3.2 Global Convergence analysis

We will proof in this paragraph that the conjugated

gradient method with three limits converge

absolutely, we need the following hypotheses to

study the convergence of the proposed new

algorithm:

Assumption (H):

(i) The level set S = {x:x € R", f(x) <
f(x0)} is bounded, where x, is the
starting point, and there exists a
positive constant such that, for all:
B > 0 and defined below[7].
(i) In a neighborhood Q of S, f is

continuously differentiable and its
gradient g is Lipschitz continuously,
namely, there exists a constant L > 0
such that

llg () - gCe)l| < Lllx-x,| (3.1)

Obviously, from the Assumption (H, i) there exists

,Vxx, €0

a positive constant D such that:

(3.2)

Where B is the diameter of Q. From Assumption

B = max{||x — x,||, Vx, x,, € s}

(H, ii), we also know that there exists a constant
y = 0, such that[8]:
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y<llgtll <y, vxes (3.3)

(iii) uniformly

Suppose the function

convex, there exist a constant t

(Vf() = V) (x = y) = tllx — yll*for all
0 (3.4)
The inequality above is equivalent to the inequality
below[9]:
y's > tlslI* and zisll> < y"s < LlislI>  (3.5)
Lemma (3.2)[7]: Suppose assumption (H) holds,
consider the iteration process of the form (2)-(3),
where d,,,, satisfies the descent condition (df g, <

0) for all u> 1 and «,, satisfies SWC. Then

T, \2
Zuzl (gudu) <+

lldwI? (3:6)
Proof: From the first inequality in SWC we can

get:
fu+1 - fu < Uaugﬂdu

Combining this with the results in reality {au >
(1—cr)|duTgu|} -
TR yields

5(1 - 0) (gquu)z
L 112

Using the bound-ness of function f in Assumption
(H), hence

fu+1 _fu < (3'7)

2
5 (gTdw)
Uzl g, 2

< 4o (3.8)

Theorem (3.3)
Suppose that assumption H holds and consider the
new algorithm obtained by DY which denoted (TT-
SZ Algorithm) where o, is computed by wolf Line
Search, then

lim inflig,ll = 0
Proof:
The proof well done by contradiction, so we
suppose that the conclusion is not true, then

llg.ll # 0 , as mentioned above there exist a

constant ¢,y > 0 such that

0<¢<l|lgell<y, Vk=0
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We have by equations (1.3) and (2.8) dy4q +

— pPNew
Ju+1 = Pu+1 Ay

Now by taking the square norm of both sides of our
new direction
dusal? = BEEYI? N dull® — 2941 duss
= llgus1ll® (3.9)
Divide the two sides of the equation (3.9) by
(gL, 1dy.1)?, therefore we end up with
ldusall* _ BYEDNAI? 2
(Gr+1dus1)? (Gi+1%u+1)?  Gusrdusr
_ llgusall®
(Gr+1dus1)?
_ (BN
(Gi+1dur1)?

(7
1Gueal?

1
" Mgunal
_ B 1
T (Gh+1dus1)? | gusalI?
We set the associative parameter equal to
(digu)®
|9l adl?

I gusal )2
gg+1du+1

DY+ (A - 1?
ldys1l?
(.911;+1du+1)2

dTg )2 2
DY 4+ (1—1 (u—u> d. 12
(21 + A= D)

(95+1du+1)2

1
Fgunl?
llduq4l?
(Gi+19us1)?
< (Gu+19u+r1)?lldy |12
T (diy)?*(Gie1@ur)?

T T, \2
Jus1Gu+1 __ (dugu) ) 2
20—1 d
( ( ) digy llgull*lld.ll* .|

(95+1du+1)2

2
~ (daguf) )
(@ Dgalzldare) N4l 1

+
(95+1du+1)2

+

+

gu+all®
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ldy1I?
(95+1du+1)2
(gu+lgu+1) lldy, 1|2
(d Yu)? (gu+1du+1)2
gu+1gu+1(dugu)2”du”2
dlgullgull?lld, 1% (gL 41 dus1)?
(d1,.9.)*|ldy|I? + 1
lgull*lldull*(gh41dus)? N1 Gusall?
We know that dfg,.,; <dly, and by Wolfe

+2(4

-1

+(1—1)?

condition dl g, = c2dlg,=c2dl g, <
duyu=-c2gdy gy = ~dyyy
This implies that || g, |I> = — = dTyu = —2|lg,lI?
< dyyu
[
(Gi41@ur1)?

(Gu419u+1)?ldy ]I
B _C2||gu||2(9£+1du+1)2

gu+1gu+1(d gu)zlld ”2
dagu”gullzlld ”2(gu+1du+1)2

2 (dugu)*lldy|l?

+2Q4

-1

2
IR TN R A A
1
" Mgwnl
Since all the magnitude

2 (A= D2 NIdull?, (d7gusr )% Ay lgull?
Lldy]I1* and (df g,) ? are greater than zero, then

[
(G+1Qu+1)?
< 2(1 _ 1) gu+lgu+1(d gu) ”d ”2

A% Gull gl 1 dulI? (o4 1dus1)?

1 ldysaI?
27 T 2
lgu+1ll (Gu+19us1)

gg+1gu+1(dﬂgu)2 ”du”2

= 20 ) O Pl 2 (g1 )2
1
T Gueal?
s 12 ]
(95+1du+1)2 ~ gyt ll?

When u =0 the above inequality vyields

ld, |
/ @2 = gl

TJPS

lldy 1% 1
(a%gu)’ ~ Ngul®

Hence for all u, we conclude that

lldylI?
Therefore( Lo s < Yie °||g E So, by (3.3)

u
Il 51
(g7 = Li72  (dlg,)?

d 2
<_Z || ||2
aigu)
after we take summation both sides
ldl? _¥?
(d}, gu)z_
Which contradicts Zountendijk condition in

theorem (3.3) The proof is then complete.
Numerical Expermental
In this section we present the performance of
FORTRAN implementation of the new algorithm
(TT-SZ) derived in this papter on the same set of
unconstrained optimization test problems used
Andrie(2008)[10]. And the Matlab code well
written to illustrate the comparsion using Dolan
Molar method to figure out the strength the new
techniques. These algorithm are compared with two
well known Three Trem Fletcher Reeves conjugate
gradient algorithm introduced by Zhang [4] which
is considered as one of the best TT-CG
methods(Andrei,2008b). For each algorithm we
have considered numerical experiments with
number of variables n=100 -1000 inceasing 100.
All these algorithms are implemented with the same
line search procedure. Our comparisons includes
the following:
1- NOI: the number of iteration
2- NOF :number of function and gradient
evaluations which are same in these
algorithms.
3- CPU:The total time required to solve (15)
problem in the particular
dimension.
Figures (4.1), (4.3) and (4.3) gives the NOI, NOF
and total time required for solving (15) problems
for n=100, 200, 300, 400, 500, 600, 700, 800, 900,
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1000 respectively. time not considered since some than maximum number of iterations which is 2000.

algorithms are failed to arrive to the solution in less
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Figure (4.2): NOFG comparison between TT-SZ and TT-FR.
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Performance Profile

—+—TTFR
New TT-SZ

4 5 6

Figure (4.3): CPU comparison between TT-SZ and TT-FR.

We can see that our method's curve, which is
shown in red, goes beyond the competition's curve,
which is shown in blue. This is true for the
approofd comparison criteria, which are the number
of iterations, the number of function calculations,
and the time.
Conclusion

The
parameters of the conjugated gradient method of
type s
unconstrained optimization problems. We also

expansion of  different

trinomial investigated to  solve
discussed the analytical side of the proposed
algorithm and how the conjugation condition, the
property, the Global

convergence properties were used to study its

sufficient descent and
stability. As for how the research can be used in the

real world, it has been checked for optimal

mathematical functions and the addition of
numerical results that show how similar methods
from other studies compare.
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