Using Machine Learning Algorithms in Intrusion Detection Systems: A Review
Main Article Content
Abstract
Intrusion Detection Systems (IDS) are essential for identifying and mitigating security threats in Internet of Things (IoT) networks. This paper explores the unique challenges of IoT environments and presents machine learning (ML) algorithms as powerful solutions for IoT-IDS, encompassing supervised, unsupervised, and semi-supervised learning. Notable algorithms, including decision trees, random forests, support vector machines, and deep learning architectures, are discussed. Emphasis is placed on the critical role of feature selection in developing efficient IDS, addressing challenges such as heterogeneity, limited resources, real-time detection, privacy concerns, and adversarial attacks. Future research directions include advanced ML algorithms for IoT data, integration of anomaly detection, exploration of federated learning, and combining ML with other cybersecurity techniques. The paper advocates for benchmark datasets and evaluation frameworks to standardize the assessment of ML-based IoT-IDS approaches, ultimately contributing to heightened security and integrity in IoT systems..
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1].[1].[1].[1]. Guo, H., Goodchild, M. F., & Annoni, A. (2020). Internet of Things :In Manual of Digital Earth. Springer, Singapore, pp. 253-270. https://doi.org/10.1007/978-981-32-9915-3_11
[2].[2].[2].[2]. Bellini, P., Nesi, P., & Pantaleo, G. (2022). IOT-enabled Smart Cities: A review of concepts, frameworks and Key Technologies. Applied Sciences, 12(3), 1607. https://doi.org/10.3390/app12031607
[3].[3].[3].[3]. Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IOT in Smart Cities: A Survey of Technologies, practices and challenges. Smart Cities, 4(2), 429–475. https://doi.org/10.3390/smartcities4020024
[4].[4].[4].[4]. Bhushan, B., Kumar, A., Agarwal, A. K., Kumar, A., Bhattacharya, P., & Kumar, A. (2023). Towards a secure and sustainable internet of medical things (IOMT): Requirements, design challenges, security techniques, and future trends. Sustainability, 15(7), 6177. https://doi.org/10.3390/su15076177
[5].[5].[5].[5]. Tariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research directions for the internet of things: A comprehensive review. Sensors, 23(8), 4117. https://doi.org/10.3390/s23084117
[6].[6].[6].[6]. E. Altulaihan, M.A. Almaiah, and A. Aljughaiman. (2022). Cybersecurity Threats, Countermeasures and Mitigation Techniques on the IoT: Future Research Directions, Electronics, vol. 11, no. 11, p. 3330,. https://doi.org/10.3390/electronics11203330
[7].[7].[7].[7]. Altulaihan, E., Almaiah, M. A., & Aljughaiman, A. (2022). Cybersecurity Threats, Countermeasures and Mitigation Techniques on the IoT: Future Research Directions. Electronics, 11 (11), 3330. https://doi.org/10.3390/electronics11203330
[8].[8].[8].[8]. Gyamfi, E., & Jurcut, A. (2022). Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets. Sensors, 22 (10), 3744. https://doi.org/10.3390/s22103744
[9].[9].[9].[9]. Arshad, J., Azad, M. A., Abdeltaif, M. M., & Salah, K. (2020). An Intrusion Detection Framework For Energy Constrained IoT Devices. Mech. Syst. Signal Process., 136 , 106436. https://doi.org/10.1016/j.ymssp.2019.106436
[10].[10].[10].[10].[10]. Mazhar, T., Talpur, D. B., Shloul, T. A., Ghadi, Y. Y., Haq, I., Ullah, I., ... & Hamam, H. (2023). Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence. Brain Sciences, 13(4), 683.
[11].[11].[11].[11].[11]. Saheed, Y. K., Abiodun, A. I., Misra, S., Holone, M. K., & Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting internet of things network attacks. Alexandria Engineering Journal, 61 (12), 9395-9409.
[12].[12].[12].[12].[12]. Kaur, B., Dadkhah, S., Shoeleh, F., Neto, E. C. P., Xiong, P., Iqbal, S., ... & Ghorbani, A. A. (2023). Internet of things (IoT) security dataset evolution: Challenges and future directions. Internet of Things, 100780.
[13].[13].[13].[13].[13]. Benkhelifa, E., Welsh, T., & Hamouda, W. (2018). A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT: Toward Universal and Resilient Systems. IEEE Communications Surveys & Tutorials, 20 (4), 3496-3509. https://doi.org/10.1109/COMST.2018.2844742
[14].[14].[14].[14].[14]. Sicato, J. C. S., Singh, S. K., Rathore, S., & Park, J. H. (2020). A comprehensive analyses of intrusion detection system for IoT environment.
Journal of Information Processing Systems, 16 (4), 975-990.
[15].[15].[15].[15].[15]. Diro, A., Chilamkurti, N., Nguyen, V.-D., & Heyne, W. (2021). A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors, 21 , 8320. https://doi.org/10.3390/s21248320
[16].[16].[16].[16].[16]. Zehra, S., Faseeha, U., Syed, H. J., Samad, F., Ibrahim, A. O., Abulfaraj, A. W., & Nagmeldin, W. (2023). Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey. Sensors, 23 , 5340. https://doi.org/10.3390/s23115340
[17].[17].[17].[17].[17]. Zikria, Y. B., Afzal, M. K., Kim, S. W., Marin, A., & Guizani, M. (2020). Deep learning for intelligent IoT: Opportunities, challenges and solutions. Computer Communications, 164 , 50-53.
[18].[18].[18].[18].[18]. Gerodimos, A., Maglaras, L., Ferrag, M. A., Ayres, N., & Kantzavelou, I. (2023). IoT: Communication protocols and security threats. Internet of Things and Cyber-Physical Systems, 3, 1– 13.
[19].[19].[19].[19].[19]. Al-Amiedy, T. A., Anbar, M., Belaton, B., Kabla, A. H. H., Hasbullah, I. H., & Alashhab, Z. R. (2022). A Systematic Literature Review on Machine and Deep Learning Approaches for Detecting Attacks in RPL-Based 6LoWPAN of Internet of Things. Sensors, 22 , 3400. https://doi.org/10.3390/s22093400
[20].[20].[20].[20].[20]. Rodríguez-Rodríguez, I., Campo-Valera, M., Rodríguez, J.-V., & Frisa-Rubio, A. (2023). Constrained IoT-Based Machine Learning for Accurate Glycemia Forecasting in Type 1 Diabetes Patients. Sensors, 23, 3665. https://doi.org/10.3390/s23073665
[21].[21].[21].[21].[21]. Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., & Wahab, A. (2020). A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics, 9 (7), 1177. https://doi.org/10.3390/electronics9071177
[22].[22].[22].[22].[22]. Shahid, J., Ahmad, R., Kiani, A. K., Ahmad, T., Saeed, S., & Almuhaideb, A. M. (2022). Data Protection and Privacy of the Internet of Healthcare Things (IoHTs). Appl. Sci., 12 (4), 1927. https://doi.org/10.3390/app12041927
[23].[23].[23].[23].[23]. Taherdoost, H. (2023). Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics, 12 (8), 1901. https://doi.org/10.3390/electronics12081901
[24].[24].[24].[24].[24]. Arhore, S. A. (2022). Intrusion Detection in IoT Systems using Machine Learning (Doctoral dissertation, Dublin, National College of Ireland).
[25].[25].[25].[25].[25]. Islam, N., Farhin, F., Sultana, I., Kaiser, M. S., Rahman, M. S., Mahmud, M., ... & Cho, G. H. (2021). Towards Machine Learning Based Intrusion Detection in IoT Networks. Computers, Materials & Continua, 69 (2).
[26].[26].[26].[26].[26]. Alghayadh, F., & Debnath, D. (2021). A hybrid intrusion detection system for smart home security
based on machine learning and user behavior. Advances in Internet of Things, 11 (1), 10-25.
[27].[27].[27].[27].[27]. Özer, E., İskefiyeli, M., & Azimjonov, J. (2021). Toward lightweight intrusion detection systems using the optimal and efficient feature pairs of the Bot-IoT 2018 dataset. International Journal of Distributed Sensor Networks, 17(10), 15501477211052202.
[28].[28].[28].[28].[28]. Gad, A. R., Haggag, M., Nashat, A. A., & Barakat, T. M. (2022). A Distributed Intrusion Detection System using Machine Learning for IoT based on ToN-IoT Dataset. International Journal of Advanced Computer Science and Applications, 13(6).
[29].[29].[29].[29].[29]. Amouri, A., Alaparthy, V. T., & Morgera, S. D. (2020). A machine learning based intrusion detection system for mobile Internet of Things. Sensors, 20(2), 461.
[30].[30].[30].[30].[30]. Ayub, M. Y., Haider, U., Haider, A., Tashfeen, M. T. A., Shoukat, H., & Basit, A. (2023). An Intelligent Machine Learning based Intrusion Detection System (IDS) for Smart cities networks. EAI Endorsed Transactions on Smart Cities, 7(1), e4-e4.
[31].[31].[31].[31].[31]. Baich, M., Hamim, T., Sael, N., & Chemlal, Y. (2022). Machine Learning for IoT based networks intrusion detection: a comparative study. Procedia Computer Science, 215, 742-751.
[32].[32].[32].[32].[32]. Othman, T. S., & Abdullah, S. M. (2023). An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(1), 126-137.
[33].[33].[33].[33].[33]. Amarouche, s., & küçük, k. (2022). Machine and deep learning-based intrusion detection and comparison in internet of things. Journal of naval sciences and engineering, 18(2), 333-361.
[34].[34].[34].[34].[34]. Wang, Y., Sun, T., Li, S., Yuan, X., Ni, W., Hossain, E., & Poor, H. V. (2023). Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey. ArXiv, abs/2303.06302.
[35].[35].[35].[35].[35]. Banaamah, A. M., & Ahmad, I. (2022). Intrusion Detection in IoT Using Deep Learning. Sensors, 22(21), 8417.
[36].[36].[36].[36].[36]. Bhavsar, M., Roy, K., Kelly, J., & Olusola, O. (2023). Anomaly-based intrusion detection system for IoT application. Discover Internet of Things, 3(1), 5.
[37].[37].[37].[37].[37]. Nimbalkar, Pushparaj & Kshirsagar, Deepak. (2021). Feature selection for intrusion detection system in Internet-of-Things (IoT). ICT Express. 7. 10.1016/j.icte.2021.04.012.
[38].[38].[38].[38].[38]. Rodríguez, M., Alesanco, Á., Mehavilla, L., & García, J. (2022). Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection. Sensors, 22(23), 9326.
[39].[39].[39].[39].[39]. Rose, J. R., Swann, M., Bendiab, G., Shiaeles, S., & Kolokotronis, N. (2021, June). Intrusion detection using network traffic profiling and machine learning for IoT. 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft) (pp. 409-415).
[40].[40].[40].[40].[40]. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 1-6. https://doi.org/10.1109/CISDA.2009.5356528
[41].[41].[41].[41].[41]. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., & Nakao, K. (2011). Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS '11) (pp. 29–36). https://doi.org/10.1145/1978672.1978676
[42].[42].[42].[42].[42]. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A Detailed Analysis of the KDD CUP 99 Data Set. Submitted to Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), 2009.
[43].[43].[43].[43].[43]. Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015 Military Communications and Information Systems Conference (MilCIS), 1-6. https://doi.org/10.1109/MilCIS.2015.7348942
[44].[44].[44].[44].[44]. Chen, J., Yang, T., He, B., & He, L. (2021). An analysis and research on wireless network security dataset. 2021 International Conference on Big Data Analysis and Computer Science (BDACS), 80-83. https://doi.org/10.1109/BDACS53596.2021.00025
[45].[45].[45].[45].[45]. Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1, 108-116.
[46].[46].[46].[46].[46]. Damasevicius R, Venckauskas A, Grigaliunas S, Toldinas J, Morkevicius N, Aleliunas T, Smuikys P. (2020). LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection. Electronics, 9(5), 800. https://doi.org/10.3390/electronics9050800
[47].[47].[47].[47].[47]. Derya Erhan. (2019). Boğaziçi University DDoS Dataset. IEEE Dataport. https://dx.doi.org/10.21227/45m9-9p82
[48].[48].[48].[48].[48]. Ullah, I., & Mahmoud, Q. H. (2020, May). A scheme for generating a dataset for anomalous activity detection in iot networks. In Canadian conference on artificial intelligence (pp. 508-520). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-47358-7_52.