Micropillar Cavities containing PMMA & Red-F Fluorescent Molecular Dye using Nb2O5/SiO2 DBRs

Main Article Content

Dr. Faleh L. Mater Al-Jashaam
Sahar Naji Rashid

Abstract

Photoluminescence emission from weakly coupled molecules has been investigated by placing a thin organic semiconductor film in one dimensional micropillar microcavities. The structure consisted of a Poly(methyl methacrylate) PMMA and red-emitting organic semiconductor (Red-F) thin film sandwiched between pair layers of dielectric mirrors made of materials that have low and high refractive indexes such as Nb2O5/SiO2 respectively. The structure's different diameter micropillars were designed using a focused ion beam. This construction is able to reserve the light in the micropillars in three directions due to total interior reflection horizontally and disseminated Bragg reflectors vertically. Optical emission properties such as changing the spectral wavelength of the released light depending on the micropillars diameter can be controlled. As a result, series of sharp lines of emission spectra were obtained from the micropillars with diameters staring from 4 μm to 10 μm. By placing a 200 nm of thin film using (Red-F & PMMA) polymers into a 7 μm diameter micropillar, a quality factor of 446.1 was obtained. Besides, it was also obvious that as the micropillar diameter was decreased, the energy of all cavity modes gradually blue-shifted.

Article Details

How to Cite
Al-Jashaam, D. F. L. M., & Sahar Naji Rashid. (2024). Micropillar Cavities containing PMMA & Red-F Fluorescent Molecular Dye using Nb2O5/SiO2 DBRs. Tikrit Journal of Pure Science, 29(3), 47–54. https://doi.org/10.25130/tjps.v29i3.1561
Section
Articles

References

References

[1] Wu, F., Liu, T., Chen, M., & Xiao, S. ''Photonic

bandgap engineering in hybrid one-dimensional

photonic crystals containing all-dielectric elliptical

metamaterials'' Optics Express, 30-19, (2022).

[2] Saleki, Z. '' Nonlinear control of switchable

wavelength-selective absorption in a one-dimensional

photonic crystal including ultrathin phase transition

material-vanadium dioxide'' Scientific Reports, 12-1

(2022).

[3] Mogni, E., Pellegrini, G., Gil-Rostra, J., Yubero,

F., Simone, G., Fossati, S. & Biagioni, P.'' One-

Dimensional Photonic Crystal for Surface Mode

Polarization Control''. Advanced Optical Materials,

10-21, (2022).

[4] Fort, T., Kanok, R., Hlubina, P., Pokorny, P., &

Sobota, J. '' One-dimensional photonic crystals with

different termination layer thicknesses and very

narrow Bloch surface wave and guided wave based

resonances for sensing applications. In Photonics''

MDPI, 9, 8, p. 561, (2022).

[5] Megahd, H., Comoretto, D., & Lova, P. '' Planar

microcavities: Materials and processing for light

control'' Optical Materials: X, 13, (2022).

[6] Yun, T., Estrecho, E., Truscott, A. G.,

Ostrovskaya, E. A., & Wurdack, M. J. ''Fabrication of

high-quality PMMA/SiO x spaced planar

microcavities for strong coupling of light with

monolayer WS2 excitons'' Applied Physics Letters,

121-8, (2022).

[7] Al-Jashaam, Faleh L., et al. "Optical‐Mode

Structure of Micropillar Microcavities Containing a

Fluorescent Conjugated Polymer." Advanced

Quantum Technologies 3.2 (2020).

[8] Anthony H. W. Choi, "Handbook of Optical

Microcavities", Taylor and Francis Group, (2015).

[9] Vahala K. J. ”Optical microcavities” Nature 424,

839-846 (2003).

[10] Adawi, A.M., Cadby, A., Connolly, L.G., Hung,

W.C., Dean, R., Tahraoui, A., Fox, A.M., Cullis,

A.G., Sanvitto, D., Skolnick, M.S. and Lidzey, D.G.,

‘’ Spontaneous emission control in micropillar

cavities containing a fluorescent molecular dye’’.

Advanced materials, 18(6), pp.742-747, (2006).

[11] Daraei, A., Sanvitto, D., Timpson, J.A., Fox,

A.M., Whittaker, D.M., Skolnick, M.S., Guimarães,

P.S.S., Vinck, H., Tahraoui, A., Fry, P.W. and Liew,

S.L., ‘’Control of polarization and mode mapping of

small volume high Q micropillars’’ Journal of

Applied Physics, 102(4), p.043105, (2007).

[12] Albert, F., Sivalertporn, K., Kasprzak, J., Strauß,

M., Schneider, C., Höfling, S., Kamp, M., Forchel, A.,

Reitzenstein, S., Muljarov, E.A. and Langbein, W.,

‘’Microcavity controlled coupling of excitonic qubits’’

Nature communications, 4, p.1747, (2013).

[13] Kasprzak, J., Reitzenstein, S., Muljarov, E.A., Kistner, C., Schneider, C., Strauss, M., Höfling, S., Forchel, A. and Langbein, W., ‘’Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system’’ Nature materials, 9(4), pp.304-308, (2010).

[14] Klein, T., Klembt, S., Durupt, E., Kruse, C., Hommel, D. and Richard, M., ‘’Polariton lasing in high-quality selenide-based micropillars in the strong coupling regime’’ Applied Physics Letters, 107(7), p.071101, (2015).

[15] Reithmaier, J.Á., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L. and Forchel, A., ‘’ Strong coupling in a single quantum dot-semiconductor microcavity system’’ Naval Research Lab Washington DC, (2004).

[16] Reitzenstein, S., Bazhenov, A., Gorbunov, A., Hofmann, C., Münch, S., Löffler, A., Kamp, M., Reithmaier, J.P., Kulakovskii, V.D. and Forchel, A., ‘’Lasing in high-Q quantum-dot micropillar cavities’’ Applied physics letters, 89(5), p.051107, (2006).

[17] Schouwink, P., Berlepsch, H.V., Dähne, L. and Mahrt, R.F., ‘’Observation of strong exciton–photon coupling in an organic microcavity’’. Chemical physics letters, 344(3), pp.352-356, (2001).

[18] Madsen, K.H., Ates, S., Lund-Hansen, T., Löffler, A., Reitzenstein, S., Forchel, A. and Lodahl, P., 2011. Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity. Physical review letters, 106(23), p.233601, (2011).

[19] Jordan, R.H., Dodabalapur, A. and Slusher, R.E., ‘’Efficiency enhancement of microcavity organic light emitting diodes’’ Applied physics letters, 69(14), pp.1997-1999,(1996)

[20] Agranovich, V.M., Litinskaia, M. and Lidzey, D.G., ‘’Cavity polaritons in microcavities containing disordered organic semiconductors’’ Physical Review B, 67(8), p.085311,(2003).

[21] Jewell, J.L., Harbison, J.P., Scherer, A., Lee, Y.H. and Florez, L.T., ‘’Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization’’. IEEE Journal of Quantum Electronics, 27(6), pp.1332-1346, (1991).

[22] Iga, K., Koyama, F. and Kinoshita, S., 1988. Surface emitting semiconductor lasers. IEEE Journal of Quantum Electronics, 24(9), pp.1845-1855, (1988).

[23] Skolnick, M.S., Fisher, T.A. and Whittaker, D.M., ‘’Strong coupling phenomena in quantum microcavity structures’’ Semiconductor Science and Technology, 13(7), p.645. (1998).

[24] Tsutsui, T., Takada, N., Saito, S. and Ogino, E., ‘’Sharply directed emission in organic electroluminescent diodes with an optical‐microcavity structure’’ Applied physics letters, 65(15), pp.1868-1870, (1994).

[25] Dodabalapur, A., Rothberg, L.J., Miller, T.M. and Kwock, E.W., ‘’ Microcavity effects in organic semiconductors’’ Applied physics letters, 64(19), pp.2486-2488, (1994).

[26] Dirr, S., Wiese, S., Johannes, H.H., Ammermann, D., Böhler, A., Grahn, W. and Kowalsky, W., ‘’Luminescence enhancement in microcavity organic multilayer structures’’ Synthetic metals, 91(1), pp.53-56, (1997).

[27] Mitschke, U. and Bäuerle, P., 2000. The electroluminescence of organic materials. Journal of Materials Chemistry, 10(7), pp.1471-1507, (2000).

[28] Lidzey, D.G., Bradley, D.D.C., Skolnick, M.S., Virgili, T., Walker, S. and Whittaker, D.M. ‘’Strong exciton–photon coupling in an organic semiconductor microcavity’’. Nature, 395(6697), pp.53-55 (1998).

[29] Tokito, S., Tsutsui, T. and Taga, Y., ‘’Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions’’ Journal of applied physics, 86(5), pp.2407-2411,(1999).

[30] Lin, C.L., Lin, H.W. and Wu, C.C., ‘’Examining microcavity organic light-emitting devices having two metal mirrors’’ Applied Physics Letters, 87(2), p.021101, (2005).

[31] Wenus, J., Parashkov, R., Ceccarelli, S., Brehier, A., Lauret, J.S., Skolnick, M.S., Deleporte, E. and Lidzey, D.G., 2006. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Physical Review B, 74(23), p.235212, (2006).

[32] Dusel, M., Betzold, S., Brodbeck, S., Herbst, S., Würthner, F., Friedrich, D., Hecht, B., Höfling, S. and Dietrich, C.P., ‘’Three-dimensional photonic confinement in imprinted liquid crystalline pillar microcavities’’ Applied Physics Letters, 110(20), p.201113, (2017).

[33] Dodabalapur, A., Rothberg, L.J., Jordan, R.H., Miller, T.M., Slusher, R.E. and Phillips, J.M., ‘’Physics and applications of organic microcavity light emitting diodes’’ Journal of Applied Physics, 80(12), pp.6954-6964, (1996).

[34] Holmes, R.J. and Forrest, S.R.,. ''Strong exciton–photon coupling in organic materials''. Organic Electronics, 8(2), pp.77-93, (2007)

[35] Ilchenko, V.S., Gorodetsky, M.L., Yao, X.S. and Maleki, L., ‘’ Microtorus: a high-finesse microcavity with whispering-gallery modes’’ Optics Letters, 26(5), pp.256-258, (2001).

[36] Song, Q., Zhang, N., Zhai, H., Liu, S., Gu, Z., Wang, K., Sun, S., Chen, Z., Li, M. and Xiao, S., ‘’ The combination of high Q factor and chirality in twin cavities and microcavity chain’’ Scientific reports, 4, p.6493, (2014).

[37] Gutbrod, T., Bayer, M., Forchel, A., Reithmaier, J.P., Reinecke, T.L., Rudin, S. and Knipp, P.A., Weak and strong coupling of photons and excitons in photonic dots. Physical Review B, 57(16), p.9950, (1998).

[38] Idris F. A, Buhari A. L. , Adamu T. U. ‘’Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions’’ International

Journal of Novel Research in Physics Chemistry & Mathematics, Vol. 3, Issue 2, pp: 17-31, (2016).

[39] Liu, S., Wei, Y., Su, R., Su, R., Ma, B., Chen, Z., Ni, H., Niu, Z., Yu, Y., Wei, Y. and Wang, X. ‘’ A deterministic quantum dot micropillar single photon source with> 65% extraction efficiency based on fluorescence imaging method’’. Scientific Reports, 7(1), p.13986, (2017).

[40] Niegemann, J., Pernice, W. and Busch, K., ‘’ Simulation of optical resonators using DGTD and FDTD’’. Journal of Optics A: Pure and Applied Optics, 11(11), p.114015, (2009).

[41] Cho, D.H., Shin, J.W., Joo, C.W., Lee, J., Park, S.K., Moon, J., Cho, N.S., Chu, H.Y. and Lee, J.I., ‘’Light diffusing effects of nano and micro-structures on OLED with microcavity’’. Optics Express, 22(106), pp.A1507-A1518,(2014).

[42] Liu, Y.C. and Byrnes, T., ‘’FDTD and transfer matrix methods for evaluating the performance of photonic crystal based microcavities for exciton-polaritons’’. Semiconductor Science and Technology, 31(11), p.115019,(2016).

[43] Hagness, S.C., Rafizadeh, D., Ho, S.T. and Taflove, A., ‘’FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators’’. Journal of lightwave technology, 15(11), pp.2154-2165. (1997).

[44] Astratov, V.N., Yang, S., Lam, S., Jones, B.D., Sanvitto, D., Whittaker, D.M., Fox, A.M., Skolnick, M.S., Tahraoui, A., Fry, P.W. and Hopkinson, M., ‘’Whispering gallery resonances in semiconductor micropillars. Applied Physics Letters, 91(7), p.071115, (2007).