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Since it is employed in numerous broad fields,
boundary value problems have garnered a lot of
interest and are regarded as one of the key equations
[1, 2] . Applied mathematics, numerous fields of
physics, engineering, and chemistry all involve
boundary value problems[1-5]. The Regge problem
appears in the growth of quantum scattering when the
support for interaction is constrained. The Sturm-
Liouville equation on the semi-axis is the outcome of
splitting the variables in the three-dimensional
Schrddinger equation with radial symmetric potential,
which is essentially the S-wave radial Schrddinger
equation in physics.

" (¢, ) +qQPE D = 1P(E, D). ... (1.1)
The above equation that can be translated into
fractional order with T.Regge problem was first
worked on by Karwan and Hozan in their paper [2, 6,
7].In this paper, we examine solutions to fractional
boundary value problems. The interval on the half-
axis R+ is supported compactly by the investigations
of the Schrodinger operator with potential this
problem manifests as

—6DgY () + qmw(m) = Py (),
[0,a], 3<a<4..(1.2)
1/)(0) = .81' lp’(O) = 32 ) Il}(a)
Ba ..(1.3)
Where B, B2, B3, B, are constants and q(n),p(n) €
L, [0, a], where

L, [0,a] = {f(): [, |f (mldy < 0} and 0 < m <
f(m) <M < o,and a € (3,4] ,and A is a spectral
parameter.

This fractional boundary value problem, along with
other fractional order calculus boundary value
problems, is a helpful tool for comprehending the
memory and inherited characteristics of various
materials and processes.[8, 9] . Numerous scientific
and technological domains, including as biology,
chemistry, fluid mechanics, acoustics, viscoelasticity,
anomalous diffusion, and control theory, can make
use of it. In these instances, a family of separately
presented integro-differential equations was solved
using fractional differential equations. [7], [8]. The
existence and uniqueness theorems for fractional
ordinary differential equations were introduced. [3,
10].

and useful in many science ,physics and chemistry ,
engineering[5, 11]. There have previously been
presented a number of analytical or fractional
differential equations may be solved numerically in a
variety of ways, including [9, 12, 13, 14].

2. Preliminaries

In this section, we provide several definitions,
lemmas, and theorems that are fundamental to our
theorems.

Definition 2.1 [10] The Gamma function is defined
by the integral formula

r) = [ u'"te™du whereRe(l) > 0.

ne

=B, YP'(a)=
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Definition 2.2 [15] (Fractional Integral) a local
integrable function g(z), and for every y > 0 the
right F1 of order « is defined:

y _ z (z=s)Y?
(J.IZ g(Z) - fa T'(y) g(s)ds‘

0,
Definition 2.3 [8, 11] (Fractional Derivative) The
derivative for order « for every a € R, and m = [«a]
the Riemann- Liouville is defined as follows:

oDEg(2) = r(m 5 azm fg —s5)™ " 1g(s)ds .
Definition 2.4 [10, 11] Leta >0, m = [a]. The
Caputo derivative of order « € R and f(u) be
m —times differentiabl function, u > a is defined as
aDih(u) =

d

[ = sym-et (—)m h(s)ds Or
rm-a) ds
u h™(s)

Cpa —

D h’( ) rim- a)fa (u- s)a—m+1 ds'
Remark 1: [2, 8, 11] The fractional differential and
integration operators are linear.
Let f(n),g(n) be two functions such that both
“DEf(5), “DEg(§)
exist for a€e[m—-1m)andabeC.  Then
‘D (af(§) +bg(0)) = a°Dgf () +b“Dg({)
The Caputo operator of order's integration and
differentiation has the following relationships:
e Caputo derivative of the fractional
is“DFUTfwW) = fW) .

o Fractional integral of the Caputo derivative is

18C°DEF (W) = f(u) — X L= f®)(q) |

—w<a<z<

integral

From the above we gotCD“(I“f(u)) #
I§(°DEf (w)).
Remark 2: We have the following characteristics

and definitions: The fractional integral of the two is
equivalent, however unlike the fractional derivative
of Caputo, the fractional integral of the derivatives
order a of Caputo and Riemann-Liouville is linked).
[10, 15]

Let meN,ae[m—1,m). And let f(u) be a
function such that °DZf(u) and DZf(u) exist. The
(R-L) and Caputo derivatives are related in the
following ways:

°DEf (w) = D&f (w) -
3. Methodology
Definition 3.1 [16]
According to the following norm, the vector space
Cle,d] among the continuous complex-valued
functions defined on a closed interval[e,d] is a
Banach space. ||v||C[e_d] = MaXpepe,q VM| v E
Cle,d]

Definition 3.2 [16]

Let H and S be two normed spaces and T:H — S
the operator T it is said to be bounded if for positive
number z such that||Tnl|| < zl|nll,n € H.

Lemma 3.3: Let(n) € C(0,a] consequently, the
boundary value problem's resolution (1.2)-(1.3) is

m-1 wW-a)P~%
P=0 r(k+1-a)

f(p) ().



Tikrit Journal of Pure Science Vol. 29 (2) 2024

https://doi.org/10.25130/tjps.v29i2.1562
Y@ = — [T — D (@) — 2*P())Y()dS —

r'(a)
L [a- = Z(a—1+a+——c)(q(c)—
2P + By (1 -2 +2) +

B (n =25+ 75) + 8,55 D 1 @Dy

Where B, , B2, Bs , B, are constants.

Proof: Equations 1.2 and 1.3 provide the Fractional
Boundary Value Problem that we have.

—SD%k(2) + q(2).k(z) = 2*p(2).k(2) , a € (3,4]
§Dfk(2) = q(2)k(2) — A*p(2)k(2)

Since 3<a<4 and b remark 1 we get

1% §DEk(2) = Y1) — Lo = 90"(0)

1% $DZk(z) = k(z) — k(0) — k'(0)z — Zz—zk”(O) -
k" (0)

1 §DSk(2) = k(z) — By — Poz — 2 k"(0) -
k" (0)

Now

k(2) = By — Boz = S k" (0) =S k™(0) =

14(q(2)k(2) = 2*p(2)k(2))

k(Z) = 1“(q(2)k(2) Pp()k(2) + By + oz +
Z"(0) +Z k"' (0)

Now to find k" (0)and k" (0)

k(z)—mf (2= O (a() = APk +

23
B+ Pz += . k”(O) + ;k”’(O)
Putting z = a we get

k(a) = F()f(a—oa (0@ - ApONOds +
By +aB, += k”(0)+ k”’(O)

And

K'(2) = 105 0y @ = 0 (a@) = A'p@)b (@] +

By + 2" (0) + 24" (0)
Putting n = a in k'(z) we get

k'(a) =
ok @ = O () ~ RO + fy +
ak”(o)_l_ ku/(o)

From boundary conditions Y(a) = B5 ,P'(a) =B,
So

Lk(0) + Sk (0) = B3 — By — af, -
mf (- 0 (0) - Pp@IKQ)
And ak”(0) + S (0) = B, — fr = 2 [(a -
A ORI T

Let A=ps~pi—aP — 7=y @O (a(®) -
2p()k(9)dg
Ad B =y — i i@ = 9% (a(9) -
p()k()dS
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a? 17 a? "

ak"(0) + £ k"'(0) = B ...(L5)

Solve equations 1.4 and 1.5 together to find
k"' (0) and k""" (0) we get

k"(0) = %A - %B and k' (0) = %B
Put k"' (0) and k'""(0) in above we have

k(z) —r(a)f (z=9*(q(Q) = 2*p(O))k(Dd] +
Bt Bz + 5 (5a—2B) + 5 (5B~ 54)

k(z) = mf (z=9*(q() = 2*p(O))k(Dd] +
B + Bz + z* —A—z —B+Z3 ! =B — z3 2

k() = oy (z - D" (a@ - /14p(€))k(€)d€—

INCEXoLS Z(a—1+a+——<)(q(€)—

F) +
(3a— 1) (z-a)
Bo (2 ="+ 55) + o 52 4 5, O

As defined by equations 1.2 and 1.3, the fractional
operator associated with the fractional boundary
value issue is as follows:
1
T:C[0,a] - C[0,a] s Tk(z) =ra)foz(z—
3
z J‘Oa(a _

O (9@ = 2*p@)k(@)d ~ s
0 (a- 1+a+5—5) (a0 -
) +

PO + 5, (1-%+2

B2 (Z - T+ aZ) + B3 (3231) 34+ ﬁ4(za—za)zz.
Lemma 3.4: if |B;| < ||k]|| then the operator T is
bounded.

Proof: Define the operator T:C[0,a] — C[0,a] and
letk € C[0,a],C €[0,a]

We will show that ||Ty|| < I|lk|| , I € RT,

|Tk(2)| =

i 5= 070 = 2@ -
azl‘(a)f( a=9* 2(0‘_1+a+__<)(Q(O—
Bp©)(@)d + By (1
ﬁz(z——+ )+ﬁ3(3231) 3+B4(Zaza) 2|
@f Iz - )%~ 1I(Iq(5)|+I/l“llp(Z)I)IZ(Z)IdH

azr(a)f( a—{)%?
I/14|IP(C)I)|Z(€)Id€ +1Bil |1

12
-24
a3

azr(a)

XpO)k(@d +p, (1 -

——+—)+

2z [3a-1] I I
Bal |z = 2=+ 5| + 1851 25 2 3+ﬁ g
< He Il 52 YR aueHED ) IIkllf (a-
c)“2(a—1+a+——()dc+|[>’3||3a—1|
a®M(1+|2*]) aM(1+]2%)) _
< D) gy 4 D gy (£ (@ -1+
a+2)— ) + lklli3a - 1]
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< l|k|| where
_a®M(1+]2%)) | am(1+]|A%]) (%t
- ar(a) r(a) (a 1(a—1+a+ )
= 1)) +13a—1|
So the operator T is bounded.
Definition 3.5: [17] for all € > 0 there exist § >

0,and for alln,,n, € D(f,) a sequence function
fn is said to be equicontinuous if such that |n, —
Ml < éthen |f,(n2) — fu(m)l <e.

Lemma 3.6: The operator T is equicontinuous.
Proof: Define the operator T:C[0,a] — C[0,a] and
lety € C[0,a],{ €[0,qa]

If

for all € > 0 there exist § >

0,and for all Y({;),¥({;) € D(T) such
18, — Gl < 8 then [Ty () — T(G)l < e
Suppose that B, = {y € C[0,al, I¥ll¢cjoq < ¥} ¥ >
0,Iet0§(§(1552<a

T () = T (&)l =

that

L2 g, - 0% (q() -

F(a)
Bp@)P()ds = 1= 16 = )" (9 (©) -
Pp@)p@dg + S 8 - et (a1 +

a+2-9)(a0) = PO + by (5 (67 -
&)+ 567 =60) +h (G- +
2020+ (60 - 0) + B ER(6 -
69 +5(@ - 067 - G - 05?)|

Since q(n).p(n) € L*[0,a] s0 max,efo,qq(m) =
M= maxne[o,a]p(n)

And |a - b| = |b — a andmax,eioq ()| =
we get

ITY () — TY(G)| <
D% g — [5G, —

Il

< MO+

el |57 -
0 tag| + 16, — GllG? +
G5+ &Il s | [y (e = %2 (e — 1+
a+2-0)ac|+ g (51 2—4‘1I|(Z+(1|+
218 = Gl + 6o + &%) + 6, (16 — Gl +
216 = allGe + Gl + 18 = Gll6” + 626 +

&) + B 5210 — Gl + Gl + 52+
%(Kz - {1”(1 + 00 + (22| +all, — Gllg +
al).
Aind we have |{, — | <6 and {, ¢, €[0,a] so
implies that
ITlI)(Cz) —Tl/)(fl)l <

r(a+1) T afr(a) — (a B
1+a+——()d(| +By6 (a)+8ﬁ25+
B:6 202 + 556,
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Take
6 =

€

4 4 -
O e ey

We get [Ty (3,) — Ty (G)l <€
Therefore T is equicontiuous.
Definition 3.7 (Contraction) [18] A mapping
T:E — E is said to be contraction on E (E,d) if
there is a positive real number h < 1 such that for
any n,y € E, then is a full metric space.
d(Tn,TY) < hd(n, ) .
According to geometry, any points x and y have
images that are closer together than those locations x
and y that are more accurately spaced apart.
Additionally, the ratio of
d(Tn, Ty)/d(n,y) cannot go above a limit h that is
unmistakably less than 1.
Theorem 3.8: (Banach Fixed Point Theorem) [7,
19]
If T:S - S if T has a distinct fixed point in S and C
is a contraction operator defined on S.
Theorem 3.9: Existence and Unigueness Theorem
If the condition is true, the Fractional Boundary
Value Problem (FBVP) presented in sections 2.2 and
2.3 has a unique solution if

a® M(1+|2*|)(aa?+aa?—a?—a+2a
D <1;WhereD = (1] (0[)_(1)“{1“) )
proof: Define the operator T as T:C[0,a] — C[0, a]
is
TllIJ(W) =
ra o )01 = 0 (@(@) = 2 p(D)P(©)dg -
L fia- 0 (a—1+a+2-7) (a@ -
2p@W@dg + (1 -2 +2) +

2n? n (3a-1) (71 a)
Bo(n =22+ L) + B O 4 5, 22,

a3
Let u,v € C[0, a] So we have

ITu(n) = Tv()| = |%f"(n ~ 9" (q(@) -
p())u(Q)di — azr(a)f (a—Q)*2 (a —14a+
2-0) (4@ = A*p@)u@)dg + By (1 -2+
2n3)+ﬁ2(n_ﬁ+n )+ﬁ3(3231)n3 n

B 2 - — f”(n O (q() -
M@+ [ @ - )% (a—1+a+
2-0) (@@ - ApO) O = f; (1
)= b (n =2+ ) -
B, (naza)n2|

< |@f0"(n — 0% H(q(@) = *p()Iu() -
v@ldg] + | i@ -« (a—1+a+2-
¢) (4@ = 21*p() () — u()ldg|

Taking maxgepo,q) We get

+3a +5B4

39?2
- +
(3a-1)
ﬁS 3 173

a
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< MO — v f (@ - a5 +
an(1+]1%) o e
WOy~ vl fa = ) (a =1+ a+ -

¢)dg|, since q(n),p(n) € L,[0,a] .

a®M(1+|2%]) aM(1+]2%))
< 70(”00 llu— M-

o]l (&= (a—1+a+ o

a(a 1))
_a M(1+|A D Il

” (aa +aa’-a —a+2a) _
T re+n) a(a-1) -

a®* 1M (1+|2*|)(aa?+aa?-a?-a+2a)
(a—1D)r(a+1) ”

= Dlju —v||

a® M(1+]2*))(aa?+aa®-a —a+2a)
D=

(a-1)r(a+1)

Now |Tu(n) —Tv(m)| < Dllu —
N
maxyepo,q)|Tu() — Tv(m)| < maxyejo,qPllu(m) —
vl ¢
Therefore ||Tu — Tv|| < D|jlu — V“c[o,a]
Since D < 1 then T is a contraction operator. The
singular fixed point for T is determined by the
Banach Fixed Point Theorem and is supplied by
equations 1.2 and 1.3 as the unique solution to the
fractional boundary value problem. =
Definition 3.10: [18] An operator T: H — H is said
to be compact if for each bounded sequence @,, € H ,
T(9,,) has a convergent subsequence .
Theorem 3.11: [18] (Arzela Theorem) There is a
convergent  subsequence for any  bounded
equicontinuous function. Every operator that is
bounded and equicontinuous is compact.
Theorem 3.12: [19] (Leray-Schauder Fixed Point
Theorem)
Let Y be a Banach space and let A:Y — Y being a
small operator Let's say the set
N={eY|yY=uTy forsome"ue€][01]}Is
bounded, and then A has at least one fixed point.
We shall present a few theorems to demonstrate the
existence and uniqueness theorem for problems 1.2
and 1.3 of fractional order.
Theorem 3.13:  Suppose that there exist real
number G > 0, such that B3 < [[Yll¢[o,q < G , then
the fractional boundary value problem given by
equations (1.2)-(1.3) has at least one solution.
Proof: let T be the operator T: C[0,a] — C[0,a] and
let ¥ €C[0,a],n €]0,a]
By (Lemma 1) we can define the operator T related to
fractional differential equation as

Tlll)(n) .
i do (=0 (a@ = 2p(D)P()dg ~

r@ o INCETb (a —l+a+-— () Cl
2p@)Wp@)dS +py (1- 2+ —) +
Bo(n =2 +L) + By —(3‘;31)173 + B 2,

< vl +

—vl|
Where

llcroq
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Let L= atm(1+]27) aM(HWD( —a+aa+
r(a+1) a—-1r(a+1)

%a—a)+(3a—1),andR =GL

And let

M={peC[0,a] | Y =uTyY for some u € [0,1]}
We must prove that M is a bounded set, to do this
suppose that Yy eM if Yy =0 then M = {0} is
bounded and by using Leray-Schaude fixed point
theorem operator T has a fixed point, this fixed point
is a solution of the integral equation related to
fractional differentional equation given by 1.2 and
1.3.

IfY e Mand ¥ # 0, so we have

W@l = Wyl =u|m) Jo @ =) -
PPOWO — [ a= D (a -1+ a+
2-0) (@@ = 2*p@)p(@)dg + By (1 -2+
)02

B 22|,

< |75l @@= 0% (a() + Ap©)()dS +
el a=0 " (a-14+a+2-¢) (@) +
Fp@ (@S + p3(3a - 1),

<
D i [ @ - e rag +
am(1+[1%)) « 2
el @ - 9 2 (a—1+a+2-
¢)d< +Ipll3a—1),
a®M(1+|2%)) am(1+[2%)
<[t WIS ol (S (e — 1+
a+)-= 1)|) +I Iyl 3a ; 1|)|
_ a®M(1+[2%])) | a®mM(1+|2%))
= Il [ + e (e b aa+
27‘7‘—a)+(3a—1)] ,
<GL=R Since SUPnefo,a) W =
¥ llcto. < R:

This implies that M is a bounded set, and since T is a
bounded and equicontinuous operator according to
lemma 1.2 and 1.3, the operator T is compact and
fully continuous according to the Arzela theorem. As
a result, T has a fixed point according to the Leray-
Schauder fixed point theorem, and this fixed point is
the solution to the fractional boundary value problem
stated by 1.2 and 1.3.

Theorem 3.14: (Schauder Fixed Point Theorem)
[18, 20]

In a Banach space E, let B be a nonempty, convex,
closed, and bounded set, and let T:B - B be a
compact operator. When that happens, T has at least
one fixed pointin B .

Theorem 3.15: If there exist real numberZ > 0,
such that

B3Ba-1)(a-1)r(a+1)
(a—1)r(a+1)—aaM(1+|/14|)((a—1)+(a2—a+aa+%“—a))
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Therefore there is at least one solution to the
fractional boundary value issue presented by
equations (1.2)—(1.3).

Proof: Define the operator T:C[0,a] = C[0,a] and

let ¥(n) € C[0,al,n € [0,a] as in theorem 1.4. Let
B3Ba-1)(a-1)r(a+1)

(a—l)F(a+1)—a“M(1+|l4|)((a—1)+(a2—a+aa+¥—a))
and assume
B, ={¥ € C[0,al, I lljo,q< Z}.
The existence of B, as a nonempty, closed, convex,
and bounded subset of C[0,a] may thus be verified
with simplicity.
It's clear that B, is closed and bounded set, and
convex set
Now to prove operator T on Bj is bounded, lety €
By, then

Ty 0] =
Im 20 = 9= (q(Q) = 1*p(@))p()dS —
[ a- Z(a—1+a+——c)(q(c)—
2O+ py (1-2+21) 4
)+ﬂ3(3a 1) VE ,84(" a) |
Sy o i lpl (a —a+

r'(a+1) (a—1)r(a+1)
(o -

aa+7—a)+ﬁ3(3a—1)|.

a®*M(1+]2%])
r'(a+1)

a®*M(1+]2%))
(a—1)r(a+1)

a+aa+2—a—a)>Z.
a

_ a™™MQ+A) | a™MA+HAD (5
<Bs(Ba-1)+ ( I(a+1) (a-Dr(a+1) (a “t
aa +2 -
a
Ba(3a—D(a-1)r(a+1)
a) s ——..(16)
(a—1)r(a+1)—a“M(1+I/1‘*I)((a—1)+(“2‘“+““+7‘“))

_ B3Ba-1)(a-1)r(a+1) _
B (a—i)F(a+1)—a“M(1+|/14|)((a—1)+(a2—a+aa+%a—a)) B
Z.
Therefore [Ty < Z.
So we get TB; € B, , that means the operator T on
By is bounded, and clearly T is equicontinuous and
bounded operator on C[0,a], by Arzela Theorem
operator is compact so by applying Schauder fixed
point theorem, T has at least one solution.
4. llustrative Examples
In this part, we'll provide a few examples.
Example 4.1 solve the fractional boundary value
problem

= 1 1
=60 W) + 59 =2 Jp@m) 5 ne(01]
YO)=0, P 0)=0,pM)=1,9'(1)=2
Solution: we have M =% we'll use the Laplace
transform method to solve this problem.
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10

Now—CD Y + - w(n)——/l‘*w(n)

CD w(n) -(1—/14)1/)(71)
By using the Laplace transform and applying it to

both sides, we demonstrate it.
10

L {SD,? w(n)} = LE@ - 2%} By propeties
of Laplaﬁ)e transform we have

L {SD,? ¢<n>} = {537 (s) — s7(0) — s39'(0) -
S5P"(0) - 53" (0}
Now  s3Y(s) — s5p(0) — s3' (0) — 533" (0) —
STY0) =11 =AY (s)
STY(S) —sTA =53 B=2(1—A)Y(s)
A=v"(0),B=19""(0)
<s? riae- 1)) Y(s) =siA+s3B , such that
AB+0

where

-2

W

A Bs 3
Y(s) == > + 1o >
s3+(/14 1) 53+()14 1)
Take Laplace inverse for both sides we get

1 -2
s3 Bs 3
LY (s)) =1L +
s 3 += (14 1) s3 +E(/14_1)

See [20]for inverse Laplace and related to Mittag-
leffler we get
So

1 10 1
V) = An*Ex (5= 2903 ) + Br*Ex, (501~

10
e )
From the Mittag-Leffler definition, we can discover
that 4 .
The above fractional Boundary value Problem has
solution as form

1 10 1
() = An*Eso, (5 (1= 203 ) + BrEn, (501 -

E
mz) A= 1-1,-0,
Example 4.2 consider the fractional boundary value

problem
11

=52 Y(m) + 039 () = 0.34%p(n); 7 € [0,1]
1,0(0) = 0! 1/)’(0) =1 ’ 1!’(121: 0' 1,0’(1) = -
Solution:  now —%Dn?w(n) +0.3y() =

11
0.32*p(m) - 5D, Y() = 0.3(1 = A1) p(1)
See reference [15] page 55 we can see D%Y({) =
hyY({), where:n—1< a <n,
With the Boundary condition ® (0) = by, b €
R, k=012,..,n—1,
Has the solution: ¥ () = X325 bx{*Eg j+1(h{®)
We know h=03(1-2%), 3<a<4, y(0)=
b, =0, '(0) =b; =1 so the solution is
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11
W) = Tio 0350 Exs ., (03(1 - A1n= ) =

3

4y 1
boFxs (03(1 = 2%73 ) + by Eu, (0301 -
1 11
VOVE ) + byn?E, (0.3(1 N OVE ) +
3 ] 4 u
bsn*Es, (0.3(1 — s ) = nEs, (0.3(1 -
s 11
205) + byn?En, (03(1— 207 ) +
=

E
bsn*Ex, (03(1 - A1 ).
1
/‘{ * 1’_1’ _l ’bZ = 11[}”(0) ’b3 = 17[)”(0) ’bZ’b3 * 0
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