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ABSTRACT 

In this study, we investigate a class of fractional ordering 

and fractional derivative-based boundary value problems. 

         and        . There are four boundary value 

requirements in this equation. The Banach fixed point 

theorem (Contraction mapping theorem) and the Schauder 

fixed point theorem are both used to arrive at the existence 

and uniqueness solution. Examples based on the fractional 

integral method and integral operator are used to illustrate our 

main points. 

 

 

 وجود ووحدانية الحل لمدألة القيمة الحدودية من الرتبة الكدرية
 3 ەحم قیصد نەاميس،  2 فاضل محمود بازير  ، 1 یحلم هوزاد دلذاد محمد

 قدم الرياضيات ، كلية العلهم ، جامعة الدليمانية ، اقليم كردستان ، العراق 1
 التربية الاساسية ، جامعة الدليمانية ، اقليم كردستان ، العراققدم الرياضيات ، كلية  2
 قدم الرياضيات ، كلية التربية  ، جامعة الدليمانية ، اقليم كردستان ، العراق 3

 

 خلصالم

 .ζ (0,a) و [α (3,4 .ةفي هذه الدراسة، نقهم بالتحقيق في فئة من مدائل الترتيب الكدري ومدائل القيمة الحدودية القائمة على المذتقات الكدري

النقطة الثابتة  مبرهنة( و مبرهنة التطبيق الانكماشيهناك أربعة متطلبات للقيمة الحدية في هذه المعادلة. يتم استخدام نظرية باناخ للنقطة الثابتة )
 .لتهضيح النقاط الرئيديةالمؤثر التكاملي استخدام الأمثلة المبنية على طريقة التكامل الكدري و وجهد ووحدانية الحل. وتم  ودر للهصهل إلىاش
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Since it is employed in numerous broad fields, 

boundary value problems have garnered a lot of 

interest and are regarded as one of the key equations 

[1, 2] . Applied mathematics, numerous fields of 

physics, engineering, and chemistry all involve 

boundary value problems[1–5]. The Regge problem 

appears in the growth of quantum scattering when the 

support for interaction is constrained. The Sturm-

Liouville equation on the semi-axis is the outcome of 

splitting the variables in the three-dimensional 

Schrödinger equation with radial symmetric potential, 

which is essentially the S-wave radial Schrödinger 

equation in physics.  

          )     )     )         )      ) 
The above equation that can be translated into 

fractional order with T.Regge problem was first 

worked on by Karwan and Hozan in their paper [2, 6, 

7].In this paper, we examine solutions to fractional 

boundary value problems. The interval on the half-

axis R+ is supported compactly by the investigations 

of the Schrodinger operator with potential this 

problem manifests as 

   
 

 
    )     )   )       )   )                  

[                )  

   )         )         )            
   )  

          )  

Where             are constants and    )    )  
   [           

    [         ) ∫ |   )|     
 

 
          

   )                            is a spectral 

parameter. 
This fractional boundary value problem, along with 

other fractional order calculus boundary value 

problems, is a helpful tool for comprehending the 

memory and inherited characteristics of various 

materials and processes.[8, 9] . Numerous scientific 

and technological domains, including as biology, 

chemistry, fluid mechanics, acoustics, viscoelasticity, 

anomalous diffusion, and control theory, can make 

use of it. In these instances, a family of separately 

presented integro-differential equations was solved 

using fractional differential equations. [7], [8]. The 

existence and uniqueness theorems for fractional 

ordinary differential equations were introduced. [3, 

10]. 

and useful in many science ,physics and chemistry , 

engineering[5, 11]. There have previously been 

presented a number of analytical or fractional 

differential equations may be solved numerically in a 

variety of ways, including [9, 12, 13, 14]. 

2.  Preliminaries 
In this section, we provide several definitions, 

lemmas, and theorems that are fundamental to our 

theorems. 

Definition 2.1 [10] The Gamma function is defined 

by the integral formula 

   )  ∫      

 
          where     )   . 

Definition 2.2 [15] (Fractional Integral) a local 

integrable function    ), and for every     the 

right FI of order   is defined:  

    
 
   )  ∫  

 

 

    )   

   )
   )               

  . 
Definition 2.3 [8, 11] (Fractional Derivative) The 

derivative for order   for every    , and       
the Riemann-Liouville is defined as follows: 

    
    )  

 

     )

  

   ∫  
 

 
    )        )         

Definition 2.4 [10, 11] Let           . The 

Caputo derivative of order      and    ) be 

  times differentiabl function,     is defined as  

  
   

    )  
 

     )
∫  

 

 
    )     (

 

  
)

 

   )      Or 

    
   

    )  
 

     )
∫  

 

 

    )

    )        . 

Remark 1: [2, 8, 11]  The fractional differential and 

integration operators are linear.  

Let    )    ) be two functions such that both 

    
    )     

    )  

exist for   [     ) and      .  Then   

    
      )      ))      

    )       
    ) 

The Caputo operator of order's integration and 

differentiation has the following relationships: 

  Caputo derivative of the fractional integral 

is    
    

    ))     )  . 
 Fractional integral of the Caputo derivative is 

  
      

    ))     )  ∑     
   

    ) 

  
   )  ) . 

From the above we got    
    

    ))  
  
      

    )). 

Remark 2:  We have the following characteristics 

and definitions: The fractional integral of the two is 

equivalent, however unlike the fractional derivative 

of Caputo, the fractional integral of the derivatives 

order   of Caputo and Riemann-Liouville is linked).  

[10, 15] 

Let       [     )  And let    ) be a 

function such that     
    ) and   

    ) exist. The 

(R-L) and Caputo derivatives are related in the 

following ways: 

    
    )    

    )  ∑     
   

    )   

       )
   )  )   

3.   Methodology 

Definition 3.1  [16] 

According to the following norm, the vector space 

 [     among the continuous complex-valued 

functions defined on a closed interval[     is a 

Banach space. ‖ ‖
 [          [    |   )|      

 [     
Definition 3.2 [16] 

Let          be two normed spaces and        
the operator   it is said to be bounded if for positive 

number   such that‖  ‖   ‖ ‖    . 

Lemma 3.3:   Let    )          consequently, the 

boundary value problem's resolution (1.2)-(1.3) is  
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   )  
 

   )
∫     )   (   )       ))   )  

 

 
 

  

     )
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  ) (   )  
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  )  

  (  
   

 
 

  

  )    
     )

       
    )

    .  

Where               are constants.  

Proof: Equations 1.2 and 1.3 provide the Fractional 

Boundary Value Problem that we have. 

   
 

 
    )     )    )       )    ) ,          

   
 

 
    )     )   )       )   ) 

Since        and b remark 1 we get  

     
 

  
    )     )  ∑

  

  
    ) 

    

     
 

  
    )     )     )      )  

  

 
     )  

  

  
      )  
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      )  

Now  

   )         
  

 
     )  

  

  
      )  
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   )    (   )   )       )   ))         
  

 
     )  

  

  
      )        

Now to find      )          ) 

    )  
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∫     )   (   )       ))   )  

 

 
 

       
  

 
     )  

  

  
      ) 

Putting     we get 

   )  
 

   )
∫     )   (   )       ))   )  

 

 
 

       
  

 
     )  

  

  
      )          

And  

    )  
   

   )
∫     )   (   )       ))   )  

 

 
 

         )  
  

 
      )  

Putting     in     ) we get 

    )  
   

   )
∫     )   (   )       ))   )  

 

 
    

      )  
  

 
      )                      

From boundary conditions      )        
   )      

So  

 
  

 
     )  

  

  
      )            

 

   )
∫     )   (   )       ))   )  

 

 
       

And       )  
  

 
      )        

   

   )
∫    

 

 

 )   (   )       ))   )    

Let             
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∫     )   (   )  

 

 

     ))   )   

And         
   

   )
∫     )   (   )  

 

 

     ))   )   

Now 
  

 
     )  

  

  
      )          ) 

      )  
  

 
      )         )  

Solve equations 1.4 and 1.5 together to find 

     )           )  we get 

      )  
 

    
 

 
            )  

 

    
  

     

Put      )           ) in above we have 
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∫     )   (   )       ))   )  
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  )    
     )

       
    )

    . 

As defined by equations 1.2 and 1.3, the fractional 

operator associated with the fractional boundary 

value issue is as follows:  

    [      [     Is       )  
 

   )
∫    

 

 

 )   (   )       ))   )   
  

     )
∫    

 

 

 )   (      
 

 
  ) (   )  

     ))   )     (  
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  (  
   

 
 

  

  )    
     )

       
    )

      

Lemma 3.4:  if |  |  ‖ ‖ then the operator   is 

bounded. 

Proof: Define the operator     [      [     and 

let    [     ,   [     
 We will show that ‖  ‖   ‖ ‖ ,       
|    )|  

|
 

   )
∫     )   (   )       ))   )  
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   ‖ ‖ , where 

  
   (  |  |)

    )
 

  (  |  |)

   )
(

    

   
(      

 

 
)  

  

     )
)  |    | 

 So the operator   is bounded. 

Definition 3.5:  [17]                           
                          ) a sequence function 

   is said to be equicontinuous if such that |   
  |    then |     )       )|   . 

Lemma 3.6:  The operator   is equicontinuous. 

Proof: Define the operator     [      [     and 

let    [     ,   [     
If 

                          
                   )     )     ) such that 

|     |    then |     )       )|    

Suppose that    {   [     ‖ ‖ [      }   

  , let              

|     )       )|  |
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 )|. 

Since    )    )    [     so      [       )  

       [       )  

And |   |  |   |         [    |   )|  ‖ ‖  

we get 

|     )       )|  
 (  |  |)
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 )      ∫      )     
  

 
|  |     ||  

  

       
 |‖ ‖
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 |)    

     )

  
|     ||  

         
 |  

  

  (|     ||  
         

 |   |     ||   

  |). 

And we have |     |      and        [     so 

implies that 

|     )       )|  
  (  |  |)

     )
        (  |  |)
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|∫     )   (  
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     . 

Take 
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      (  |  |)

     )
|∫     )   (      

 

 
  )  

 
 

|   (
  

 
)       

      )

 
    

 

We get |     )       )|    

Therefore   is equicontiuous. 

Definition 3.7 (Contraction)  [18] A mapping 

       is said to be contraction on        ) if 

there is a positive real number     such that for 

any        then is a full metric space. 

       )        )     
According to geometry, any points x and y have 

images that are closer together than those locations x 

and y that are more accurately spaced apart. 

Additionally, the ratio of 

        )      ) cannot go above a limit h that is 

unmistakably less than 1.  

Theorem 3.8: (Banach Fixed Point Theorem)  [7, 

19] 

If        if T has a distinct fixed point in S and C 

is a contraction operator defined on S. 

Theorem 3.9: Existence and Uniqueness Theorem 

If the condition is true, the Fractional Boundary 

Value Problem (FBVP) presented in sections 2.2 and 

2.3 has a unique solution if 

     ; Where   
     (  |  |)(               )

    )     )
   

proof: Define the operator   as    [      [     
is   

     )  
 

   )
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Taking      [     we get 
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 )   |,            )    )    [     . 
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    ‖   ‖ , Where 

  
     (  |  |)(               )

    )     )
  

Now  |    )      )|   ‖   ‖
 [     

 → 

     [    |    )      )|       [     ‖   )  

   )‖
 [    

 

Therefore  ‖     ‖   ‖   ‖
 [       

Since     then   is a contraction operator. The 

singular fixed point for T is determined by the 

Banach Fixed Point Theorem and is supplied by 

equations 1.2 and 1.3 as the unique solution to the 

fractional boundary value problem.     

Definition 3.10:  [18] An operator       is said 

to be compact if for each bounded sequence      , 

    ) has a convergent subsequence . 

Theorem 3.11: [18] (Arzela Theorem) There is a 

convergent subsequence for any bounded 

equicontinuous function. Every operator that is 

bounded and equicontinuous is compact. 

Theorem 3.12: [19]  (Leray-Schauder Fixed Point 

Theorem)  

Let   be a Banach space and let       being a 

small operator Let's say the set 

                            [     Is 

bounded, and then   has at least one fixed point. 

We shall present a few theorems to demonstrate the 

existence and uniqueness theorem for problems 1.2 

and 1.3 of fractional order. 

Theorem 3.13:  Suppose that there exist real 

number    , such that    ‖ ‖ [       , then 

the fractional boundary value problem given by 

equations (1.2)-(1.3) has at least one solution. 

Proof: let   be the operator    [      [     and 

let       [     ,   [     
By (Lemma 1) we can define the operator   related to 

fractional differential equation as  

     )  
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  )       )            

And let  

      [                        [      
We must prove that   is a bounded set, to do this 

suppose that     if     then       is 

bounded and by using Leray-Schaude fixed point 

theorem  operator   has a fixed point, this fixed point 

is a solution of the integral equation related to 

fractional differentional equation given by 1.2 and 

1.3. 

If     and      , so we have  

|   )|  |     )|   | 
 

   )
∫     )   (   )  

 

 

     ))   )   
  

     )
∫     )   (      

 

 

 

 
  ) (   )       ))   )     (  

   

   

   

  )    (  
   

 
 

  

  )    
     )

     

  
    )

     |, 

  | 
 

   )
∫     )   (   )       ))   )  

 

 
 

 

   )
∫     )   (      

 

 
  ) (   )  

 

 

     ))   )          )|, 

 

|
 (  |  |)

   )
‖ ‖ ∫     )     

 

 
 

  (  |  |)

   )
‖ ‖∫     )   (      

 

 
 

 

 

 )    ‖ ‖     )|, 

 |
   (  |  |)

    )
‖ ‖  

  (  |  |)

   )
‖ ‖ (

    

   
(    

  
 

 
)  

  

     )
)  ‖ ‖     )|. 

  ‖ ‖ *
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  )       )+ , 

        .        Since          [    |   )|  

‖ ‖ [      . 

This implies that   is a bounded set, and since   is a 

bounded and equicontinuous operator according to 

lemma 1.2 and 1.3, the operator   is compact and 

fully continuous according to the Arzela theorem. As 

a result,   has a fixed point according to the Leray-

Schauder fixed point theorem, and this fixed point is 

the solution to the fractional boundary value problem 

stated by 1.2 and 1.3. 

Theorem 3.14: (Schauder Fixed Point Theorem) 

[18, 20] 

In a Banach space  , let B be a nonempty, convex, 

closed, and bounded set, and let       be a 

compact operator. When that happens,   has at least 

one fixed point in   . 

Theorem 3.15:  If there exist real number    , 

such that  

  
       )    )     )

    )     )       |  |)(    ) (        
  

 
  ))
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Therefore there is at least one solution to the 

fractional boundary value issue presented by 

equations (1.2)–(1.3). 

Proof: Define the operator    [      [     and 

let    )   [       [     as in theorem 1.4. Let 

  
       )    )     )

    )     )       |  |)(    ) (        
  

 
  ))

 

and assume 

     {   [         [      }.  

The existence of    as a nonempty, closed, convex, 

and bounded subset of  [     may thus be verified 

with simplicity.  

It's clear that    is closed and bounded set, and 

convex set 

Now to prove operator   on     is bounded, let   
  , then 
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Therefore   ‖    )‖    . 

So we get          , that means the operator   on 

   is bounded, and clearly T is equicontinuous and 

bounded operator on  [    , by Arzela Theorem 

operator is compact so by applying Schauder fixed 

point theorem, T has at least one solution. 

4. Illustrative Examples 
In this part, we'll provide a few examples. 

 Example 4.1 solve the fractional boundary value 

problem 
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 we'll use the Laplace 

transform method to solve this problem. 
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See [20]for inverse Laplace and related to Mittag-

leffler we get  
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that   . 

The above fractional Boundary value Problem has 
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Example 4.2 consider the fractional boundary value 

problem 

    

  

 
 
    )        )          )      [     

    )               )            )            )     

Solution: now      
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    )          )   ) 

See reference [15] page 55 we can see       )  

    )                   
With the Boundary condition    )  )         
                  
Has the solution:     )  ∑     

      
           )      

We know           )                    )  
              )        so the solution is  
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Conclusion  
The Banach fixed point theorem (contraction 

mapping theorem) and the Schauder fixed point 

theorem have both been used to solve the fractional 

order boundary value issues 1.2 and 1.3, 

demonstrating their existence and uniqueness. The 

results demonstrate that the issue in sections 1.2 and 

1.3 has just one potential resolution. The condition 

has been achieved using the operator we described for 

the issue. 
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