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ABSTRACT 

The aim of this article is to propose an efficient hybrid 

transform iteration method that combines the homotopy 

perturbation approach, the variational iteration method, and 

the Aboodh transform forsolving various partial differential 

equations. The Korteweg-de Vries (KdV), modified KdV, 

coupled KdV, and coupled pseudo-parabolic equations are 

given as examples to show how effective and practical the 

suggested method is. The obtained exact solitary solutions of 

the KdV equations as well as the exact solution of the coupled 

pseudo-parabolic equations are identified as a convergent 

series with easily calculable components. identified as a 

convergent series with easily calculable components. 

When used to solve KdV , Wave like and  Pseudo – Parabolic 

equations , the proposed method helps to avoid Problems that 

frequently arise when determining the Lagrange Multiplier 

and the difficult integration usedin the variation iteration 

method , as well as the need to use the transform convolution 

theorem. 

 

 
 حل المعادلات التفاضلية الجزئية باستخدام طريقة تكرار التحويل الهجينة الفعالة

 رؤى شوقي أسماعيل ، علي حدن ناصر الفياض ، سعد محدن سلمان
 كمية العمهم ، جامعة الشهرين ، بغداد ، العراق الحاسهب ، قدم الرياضيات وتطبيقات

 

 الملخص
طريقة الههمهتبي السزطرب والطريقة التغايرية التكرارية بالإضافة  طريقة تكرار تحهيل هجين فعالة تجسع بين الهدف من هذه السقالة هه اقتراح 

 Korteweg-de Vries تفاضمية جزئية من الشهع معادلات تم حل إذ  لحل السعادلات التفاضمية الجزئية السختمفة. Aboodh تحهيلإلى 

(KdV),modified KdV , coupled kdv ,and coupled pseudo parabolic equation   .لإظهار مدى فعالية الطريقة السقترحة وعسمها
دمدمة ستلى الحل الدقيق لمسعادلات الزائفة السكافئة السقترنة كبالإضافة إ KdV يتم تحديد الحمهل الانفرادية الدقيقة التي تم الحرهل عميها لسعادلات

تداعد الطريقة السقترحة  Pseudo - Paraboli و Wave like و KdV عشد استخدامها لحل معادلات قابمة لمحداب بدههلة.حدود متقاربة مع 
، بالإضافة التكرار الستغاير رعب السدتخدم في طريقةوالتكامل ال Lagrange عمى تجشب السذاكل التي تشذأ بذكل متكرر عشد تحديد مزاعف

 .مبرهشة التفاف التحهيلإلى الحاجة إلى استخدام 
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1. Introduction 
The application of diverse approaches for the 

numerical and analytical solution of partial 

differential equations (PDEqs) has made significant 

advances in recent years. Differential equations (DEs) 

such as a linear and nonlinear Korteweg-de Vries 

(KdV) like equations are employed in a variety of 

physical and fluid dynamical applications. These 

equations represent both nonlinearity and dispersion, 

have received a lot of interest and served as the model 

equation for the development of soliton theory. In the 

study of nonlinear dispersive waves, the KdV 

equation appears. It was initially developed by 

Korteweg-de Vries [1] while studying long water 

waves in a canal with a finite depth. The nonlinear 

term would disappear in long wave problems in 

relatively shallow water and for extremely small 

amplitudes [2]. Due to the significance of this 

equation in many industrial and scientific 

applications, a great deal of effort has been devoted to 

understanding these equations. Other applications of 

fluid dynamics have been explored by [3]. On the 

other hand, the parabolic equation appears in a 

number of applications of mathematics, including 

heat conduction, turbulence phenomena, and flow by 

the use of a shock wave moving through a viscous 

fluid, such as dynamics modelling. Many physical 

and engineering processes are modeled by the 

pseudo-parabolic equation [4-7]. The linear pseudo-

parabolic equation is additionally referred to as a 

Sobolev type equation since S.L. Sobolev [8] was the 

first to study it in 1954. These equations serve as 

significant instances of PDEs since they include a 

third order mixed derivative with regard to both time 

and space. They are used to describe wave motion, 

which is crucial in many other branches of 

engineering and research in addition to 

hydrodynamics [9]. The equation for the one-

dimensional pseudo-parabola was developed in [10]. 

Numerous scientific and engineering facts can be 

explained by nonlinear partial differential equations 

(NLPDEs). The availability of closed approximation 

solutions to nonlinear problems is frequently helpful 

in scientific applications. There are several different 

numerical and analytical techniques that can be used 

to solve the NLPDEs. Because numerical solutions 

have limitations, the analytical solution for a 

particular PDE is always preferred., which cannot 

give us much information on the qualitative behavior 

of systems. However, It is frequently impossible to 

achieve an accurate analytical solution to the 

equations for the systems that PDEs describe because 

they are too large or complex, or because many of the 

modelled issues have led to NLPDEs, for which it is 

difficult to find exact solutions. Numerical methods, 

iterative methods, perturbation methods, homotopy-

based methods, etc. are well-known methodologies 

for approximating solutions of coupled systems of 

differential equations. Each method has advantages 

and drawbacks of its own. Discretization is employed 

in numerical approaches, which has an impact on 

accuracy as well as it required the most time and 

computing efforts. Many scholars have developed 

various numerical techniques over time These 

nonlinear equations require precise approximation 

solutions, which, despite the shortcomings of the 

numerical methods [11-17]. 

On the other hand, the iterative approaches generate a 

series of approximations for the solution. They 

produced sequential approximations using their initial 

guess. Computers can be effective for iteratively 

solving equations since these approaches require 

repeatedly performing the same operation. Finding an 

approximate solution to differential equations is a key 

part of iterative approaches. PDEs have been solved 

using a range of iterative techniques, including the 

Adomian decomposition method (ADM) [19], the 

variational iteration method (VIM), and the 

homotopy perturbation method (HPM) [18] These 

techniques produce a fast convergence to accuracy of 

either an approximation or perfect answer by 

employing terms from an infinite series. The 

evaluation of small parameters, the use of Adomian 

polynomials, and the computation of the Lagrange 

multiplier (  ) are some of the disadvantages of 

these methods. To improve the work of these iterative 

methods and avoid some of the limitations for solving 

various NLPDEQs and integral equations, a number 

of researchers are working very hard to combine 

various iterative techniques with transformations [21–

36]. Since nonlinearity does occur, Possibly not 

always. simple using only the well-known integral 

transformations to quickly solve nonlinear equations. 

In addition, it should be noted, nonetheless, that the 

majority of the iterative procedures currently in use 

contain flaws, such as needless Transformation, 

linearization, variable discretization, or the use of 

constraining assumptions. Therefore, a significant 

number of approximate exact solutions were 

consequently produced by merging an appropriate 

integral transform with other iterative techniques. 

Many researchers have employed different 

approaches to solve KdV equations. For new coupled 

modified KdV equations, Fan [37] worked on the 

extended tanh-function approach and symbolic 

computing to achieve, four different types of soliton 

solutions. The decomposition method was used by 

Raslan et al. [38] to find the soliton solutions for the 

coupled modified KdV equations. The homotopy 

analysis method (HAM) was applied to obtain the 

approximate solution of the modified KdV system 

[39]. ADM was implemented for obtaining the 

approximate solution of coupled modified KdV 

equations [40] .The effectiveness and accuracy of 

differential transform method (DTM) for proposed 

equations were proved by Kangalgil et al. [41].  

Coupled modified KdV equation systems were 
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numerically solved by Arife et al. using HAM [42]. 

In order to find approximate analytic solutions for 

coupled modified KdV equations, Zhong et al. 

employed the VIM [43]. Ao Zhu and Chengyang Fan 

[44] applied the ADM and symbolic computation 

system to obtain explicit exact solitary solutions of 

the modified KdV equation.  

The objective of the current work is to extend the 

application of Aboodh integral transform merging 

with mixed iterative methods and analysis the 

performance of the proposed approach for addressing 

linear and nonlinear problems such as the KdV and 

the coupled modified KdV like equations; and to 

compare the obtained solutions to the exact solutions. 

The suggested method called efficient hybrid 

transform iterative method (EHTIM), is developed 

for solving the KdV, modified KdV, coupled KdV, 

and coupled pseudo-parabolic equations. This method 

incorporates the Aboodh transform [45], VIM, and 

HPM. The method has significance because it does 

not employ the integral portion or the convolution 

theorem, which are typically employed in VIM to 

determine the Lagrange multiplier, then reducing the 

time and calculationsThe exact solution, if it exists, is 

always obtained using this method, even though a 

small number of iterations can be employed for 

numerical purposes with a high degree of precision in 

the form of a quickly converging series. The method 

is easy to comprehend because it doesn't call for any 

presumptions that alter the problem's physical nature, 

as those that call for discretization, linearization, or 

minor components. The findings show that the 

suggested strategy is efficient, dependable, precise, 

and adaptable. 

2. Some Preliminaries 
In this part, an overview of all the components of the 

combined suggested EHTIM will be given. 

2.1 Variational Iteration Method (VIM) 
One of the most well-known and important methods 

for solving linear and nonlinear equations is the 

VIM.. The NLPDE will be used to illustrate the VIM 

concept [20]: 

       ( )  ( )  
where  ( ) is an analytical function;   and   are a 

linear and a nonlinear operators respectively. The 

correction functional to the VIM for Eq. (1) is given 

by: 

    ( )    ( )  ∫  ( )
 

 
[   ( )    ̃  ( )  

 ( )]    ( )  

Where  ̃   is a restricted variant, i.e. 𝛿 ̃   = 0, the 

index   denotes the  th approximation, and   ( ) is 

the     that can be accurately determined by the 

variational theory. The approximation           

of   will be achieved by using any selected function 

  . The    can be determined by using the 

integration by parts and the solution is given by, 

            ( )  
2.2 Aboodh Transform (  )  

For functions of  an exponential order  ( ) over the 

set   given by [45] 

  {   | ( )|    | |       (  )  ,   ,  

                }   ( )  

where        may be finite or infinite numbers and 

the constant   must be a finite number for a given 

function in   . the operator  ( ) is used to represent 

and defined     as follows 

 , ( )-  
 

 
∫  ( )    
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The basic properties of    are given below, If  

 ( )  is the    of   ( ), then 

     , -  
 

  
     ( )  

     , -  
 

  
   ( )  

     ,  -  
  

    
  ( )  

     ,   -  
 

     
   ( )  

     ,   ( )     ( )-    ,  ( )-  
  ,  ( )-  (  )  

     ,   ( )-  . 
 

  
 

 

 
/ ( ) (  )  

     ,    ( )-  
   

 
  (   ) (  )  

     ,   (  )-  
 

 (     )
  (  )  

     ,   (  )-  
 

(     )
   (  )  

      ,    (  )-  
 

 (     )
  (  )  

      ,    (  )-  
 

(     )
  (  )  

      ,  ( )-    ( )  
 ( )

 
 (  )  

      ,   ( )-      ( )  
  ( )

 
  ( )  (  )  

      [ ( )( )]   ( )  ( )  ∑
 ( )( )

      
   
    (  )  

       ,   ( )-   
 

  
0  ( )  

 ( )

 
1  

 

 
.  ( )  

 ( )

 
/ (  )  

       ,    ( )-   
   ( )

   
  

  ( )

  
 

 
 ( )

  
   (  )  

      ,     ( )-   
 

  
0   ( )  

  ( )

 
  ( )1  

 

 
(   ( )  

  ( )

 
  ( ))   (  )  

      ,      ( )-    
   ( )

   
   

  ( )

  
 

  ( )   
  ( )

  
  (  )  

For the partial derivative, the    is given by [46], 
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2.3 Homotopy Perturbation Method (HPM) 
A dependable and efficient method The HPM may be 

used to determine the precise or approximative 

solutions of DEs [18]. In order to provide an 

example, consider the following nonlinear system 

with the boundary conditions. the HPM and to 

demonstrate its   

fundamental idea,  

 ( )   ( )   ( )           (  )  

 .  
  

  
/          (  )  

where  ( ) is an analytical function, 

                                                     

; 
  

  
 is the differentiation of   with respect to   , and  

  is the boundary of the domain   

The following homotopy  (   ) may be constructed 

by applying the homotopy technique to Eq. (30), 

 (   )   ,   -  ℝ (  )  
which satisfies, 

 (   )  (   ), ( )   (  )-   , ( )  
 ( )   ( )-        (  )  

where    ,   - which increases from 0 to 1, ℝ is the 

set of real numbers, and     is an initial approximate 

solution of Eq (30), which satisfies the boundary 

conditions Eq. (31). Clearly, from Eq. (33) we have 

 (   )   ( )   (  )     (  )  
and 

 (   )   ( )   ( )   ( )     (  )  
Assume that the following power series in   can be 

utilized to clarify the solution to Eq. (33), and 

  ,   - as a small parameter: 

          
     

         (  )  
With     ,  the solution   to Eq.(33) is given as; 

                        (  )  

Most of the time, the series in Eq. (37) converges, but 

the pace of convergence varies depending on the 

nonlinear operator. ( ). 

3. The Proposed Efficient Hybrid Transform 

Iterative Method for Solving Partial 

Differential Equations  
( EHTIM ) 

The Aboodh transform ((  )), the VIM, and the 

HPM are all combined to create the recommended 

EHTIM. The sides of a specific DE are first each 

given the (  ). The Lagrange multiplier (LM) will 

be multiplied by the resulting equation to produce the 

recurrence relation. The (LM) is then produced by 

constraining the discovered recurrence relation. This 

method does not require the often employed 

convolution theorem or integral part. used to find 

(LM) in VIM. 

 applying    of Eq.(1) result in, 

 [       ( )]    (  )  

Multiplying Eq.(38) by (LM)  ( ), we get 

 ( ) [       ( )]     (  ) 
The following recurrence relation is utilized to 

compute the value of (LM), 

 
   

(   )   
 
(   )   ( ) [      

 ( )]  (  )  

By using the optimality criterion, the (LM),   ( )  is 

determined, and 
     (   )

   (   )
      (  )  

We get to  ( )   
 

  
by assuming   

 

   
to be a 

linear differential operator.  The value of (LM) and 

the inverse of AT in Eq. (40) will be used to 

determine the approximate answer. 

 
   

(   )   
 
(   )     [ 

 

  
[      

 ( )]]              (  )  

 The HPM for nonlinear terms can be expressed as 

follows, 

 ( )  ∑      
           

        (  )  

The formula below can be used to calculate the He's 

polynomial,     

  (            
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   )]
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The following approximations can be computed by 

comparing the coefficients of same powers of    ,  
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 (  (   ))]] (  )  

and so on then the exact solution  

 
 
(   )                 (  )  

4. IlIustration Examples 
Problem 1 [47]: Consider the homogeneous linear 

KdV equation with the initial condition, 

              (   )              
           (  )  
The discussion from section 3 is continued here. The 

recurrence relation displayed bellow is obtained by 

applying the    to both sides of Eq. (50) and it is 

then multiplied by   ( ) , 
 ,          -      (  )  
Multiplying Eq. (51) by   ( ), yields 

 ( ) [ ,          -]     (  )  
The relation of recurrence is 

 
   

(   )    
 
(   )    ( ) [ ,      

    -]  (  )  

As a result of applying     depending on how the 

independent variable has changed  
 

  both sides of 

the Eq. (53), we obtain 
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Utilizing the HPM, we obtain 
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After equating     with the same powers on both 

sides, the He's polynomials are, 
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and so on. Then 
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  (  )  
so that the exact solution by using the Taylor series is 

given by, 

 (   )         (  )  
Problem 2 [44]: Consider the modified KdV 

equation with the initial condition 

    
           

 (   )   √       (  ) (  )  
where     is an arbitrary constant. 

The discussion from section 3 is continued here. The 

recurrence relation displayed bellow is obtained by 

applying the    to both sides of Eq. (60) and it is 

then multiplied by   ( ) , 

 ( ) [ ,    
        -]     (  )  

The recurrence relation is 
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 As a result of applying     depending on how the 

independent variable has changed   
 

 both sides of 

the Eq. (62), we obtain 
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so that the exact solution by using the Taylor series is 

given by, 

 (   )  √       ( (     ))  (  )  
Furthermore, by modifying the argument in Eq. (66) 

by including a constant, we can obtain more exact 

solutions. This means that we can present the exact 

solutions as, 

 (   )  √       ( (     )   )  
                       (  )  
Problem 3 [40] : Consider the generalized coupled 

KdV equations with the initial conditions 

     
     (  )  

 

 
     

 

 
    

       (  )  
                

          
        (  )  

 (   )  
  

  
      (  )   (   )  

 

 
.  

 

  
/        (  )    (  )  

Similar to the above problems, we follow the 

discussion from section 3 where            
The recurrence relation displayed bellow is obtained 

by applying the    to both sides of Eqs. (68-69) and 

it is then multiplied each of these equations by the 

Lagrange multipliers    ( ) and   ( ) respectively. 
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The recurrence relation is 
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Utilizing the HPM and using the same powers on 

both sides of Eq to equate    with. (80), the He's 

polynomials are; 
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so that the exact solution by using the Taylor series is 

given by, 

 (   )  
 

 
     (    ) (  )  

Similarly that, 
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Problem 4 [48]: Consider the following homogenous 

of coupled-pseudo-parabolic Equation, 

   
 

 

 

  
(   )  

 

 

  

    
(   )         (  )  

   
 

 

 

  
(   )  

 

 

  

    
(   )         (  )  

 (   )      (   )       (  )  
we will follow the same procedure as above. The 

recurrence relation displayed bellow is obtained by 

applying the    to both sides of Eqs. (85-86) and it 

is then multiplied each of these equations by the 

Lagrange multipliers    ( ) and   ( ) respectively. 
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Utilizing the HPM and equating     with the same 

powers on both sides of Eq. (92), the He's 

polynomials are; 

    
 
   

 
(   )       

    
 
     [

 

 
* 0   

 

 

 

  
(    )  

 

 

  

    
(    )     1+]                   

    
 
     *

 

 
[ 0   

 

 

 

  
(    )  

 

 

  

    
(    )  

  1]+          
    

  
   

    
 
     [

 

 
* 0   

 

 

 

  
(    )  

 

 

  

    
(    )    1+]             

    

  
   

 



  
 

  
Tikrit Journal of Pure Science Vol. 29 (3) 2024 

https://doi.org/10.25130/tjps.v29i3.1566   
 

78 

and so on. Then the exact  solution 

  (   )         
    

  
 

    

  
    (  )  

so that the exact solution by using the Taylor series is 

given by, 

 (   )         (  )  
Similarly that, 

 (   )          (  )  

Conclusion 
In this research, we determine exact solutions for the 

KdV equations and a coupled pseudo-parabolic 

equation. The KdV equations' solitary travelling wave 

solutions and the solution of the coupled pseudo-

parabolic equation are generated using a hybrid 

method termed, efficient hybrid transform iterative 

method (EHTIM). The approach incorporates the 

HPM, VIM, and Aboodh transformation. The exact 

solutions were discovered as a rapidly convergent 

series of straightforward mathematical expressions. 

Additionally, The Aboodh's transform is utilised by 

the EHTIM, which is helpful for the computation of 

the Lagrange multiplier (LM), in contrast to the 

regular VIM and modified VIM processes. The 

method to calculate the LM does not require the 

convolution theorem or any integration in a 

recurrence relation. The suggested method has a 

further advantage over the decomposition method in 

that nonlinear problems can be resolved without the 

use of Adomian's polynomials. In addition, the 

proposed approach makes dealing with nonlinear 

terms more  adaptive, flexible, and straightforward by 

using the He's polynomials that are computed using 

the HPM. Also, unlike some other techniques, the 

method does not require any assumptions that affect 

the issue's physical nature, such as those that involve 

linearization, discretization, or small elements. The 

collected results show how well the suggested 

strategy works, is dependable, accurate, and flexible 

in finding the right answers to the test questions.
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