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Introduction

Let R be a finite commutative ring with
identity 1, an element a € R is called Von
Neumann regular if there exist b€
R such that a = a.b.a,aRing R is Said
to be a Von Neumann regular ring if all
elements in R are Von Neumann regular
[1], [10]. We denote the set of Von Newman
regular elements by r(R) and set of non-
zero Von Neumann regular elements by
r*(R) = r(R) — {0} Taloukolaei and
Sahebi introduced the Von Neumann
regular graph GV nr + (R) of a ring R,
whose vertex set consists of elements of R
and two distinct vertices x and y are
adjacent if and only if x + y is a Von
Neumann regular element [2]. By taking
advantage of their work, we have defined a
new graph in this way, let R be a finite
commutative ring with 1. That for all non-
zero elements a and b in the ring R are
adjacent if and only ifa = a.b.a or b =
b.a.b and a # b , this graph is called by
regular divisor graph and denoted by
R4 (R). with vertex set V(R4(R)) consists
of elements of r*(R) and edge
set E(ER(,(R)) ={(a,b):a=
a.b.a orb=b.a.b, a#¥b+0}.

we have used some basic concepts in ring
theory from [5],[8],[10]and used some basic
concepts in  graph  theory  from
[2],[3].[41.[6].

Definition 1.1: [3] A graph G is finite non-
empty set consist of two sets, the set of
Vertices V(G) and the set of edges E(G).
V(@) is a non-empty set of elements named
vertices. While E(G) is the set (which is
possible empty) of unordered pairs of
vertices of V(@) called edges. The order of
the graph is the number of vertices which is
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denoted by n(G) , that is n(G) = |V(G)|,
and the number of edges of G is called the
Size of G and is denoted by Y (G), that is
Y (G) = |E(G)I.

Definition 1.2: [4] The degree of a vertex
v of a graph G is the number of all edge’s
incident to v in G. We denote the degree of
the vertex v of G by deg(v). The Center of
a graph G is the vertex v which has greatest
degree.

Definition 1.3: [3] A Walk Win G is an
edge, starting at v; and ending at v; such
that consecutive vertices in W are adjacent.
A walk in which no vertex is repeated is
called a Path. A path with n vertices is
denoted by B, . A path that begins and ends
at the same vertex is called circuit.

A cycle withn > 3 vertices is denoted by
Cp -

Definition 1.4 Let G be a connected graph,
the eccentricity of vertex v e V(G) ,
denoted by e(v) is the distance between v
and a vertex furthest from v. The diameter
of G is the maximum distance between the
pair of vertices, and denoted by Dim(G).
While the radius of G denoted by rad(G)
is the minimum distance between the pair of
vertices.

Definition 1.5 A complete subgraph of a
graph G is called clique of G. And the
maximum order of a clique of G is called
cligue number od G and denoted by w(G).
The girth of graph G is the size of the
smallest cycle in the graph and denoted by
gi(G).

Definition 1.6: [5] The chromatic number
of a graph G is denoted by x(G). Is the
minimum number of colors needed for
proper vertex coloring of G . G is k-
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chromatic if y(G) = k. (Where Kk is positive
integer number)

Definition 1.7: Let v; and v; be two
distinct vertices of graph G; and G,
respectability. Two vertices v; and v; are
identified if they replaced by anew vertex
v* such that all edges incident on v; and
v; are now incident on the new vertex v*
and denoted by G1+G-.

Definition 1.8 (Double identifying) is the
identifying two distinct vertices in the
graphs G, and G,, denoted by G,++G,, and
identifying an edge between two graphs say
e; € G; and e, € G, is denoted by G; o
G,.

2-Regular divisor graph of commutative
ring Z,

The commutative ring Z, ,n>1 for n
equal to (prime, composite, odd, or even), is
regular ring or not regular ring but in each
case, it has some regular elements
depending on n.

To study the regular divisor graph of the
commutative ring Z,,, which is (undirected)
graph and symbolized by R4(Z,,) , where
two non-zero distinct elements in Z,,, a and
b are adjacent as a vertex ifand only if a =
a.b.a or b=>b.a.b for the regular
elements a,b € Z, . the regular divisor
graph of commutative ring Z,, is simple,
undirected loop less graph Ry(Z,) with
vertex set V(Z,,) and edge set E(Z,) =
{(a,b):a=a.b.a or b=>b.a.b, a +

b+0e€Z,}
Example 1: The ring Z;g which is not
regular ring but have some regular

elements, the non-zero regular elements
r*(Z1g) =
{1,24,5,7,8,9,10,11,13,14,16,17} ,the
regular divisor graph Ry(z,g) is shown in
figure-2.1, which is different from any other
regular divisor graphs.

Gingivitis and periodontitis are two
conditions listed under the umbrella term
periodontal disease. Periodontal disease
refers to a range of conditions that affect the
supporting tissues of the teeth [1].
Typically, one of the first indications of
gingivitis is bleeding gums, which is a
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common symptom of the disorder [2]. In the
absence of treatment, gingivitis can
progress to periodontitis, which is
characterized by the loss of periodontal
attachment and alveolar bone and
ultimately results in tooth loss. Antibiotics
can be used to treat gingivitis [3].

Dentists refer to the inflammation of the
gums as gingivitis. It occurs as a result of
inadequate tooth cleaning, which leads to
the deposition of bacterial plaque on the
surface of the teeth. Therefore, effective
tooth brushing is vital for achieving enough
food debris clearance, as it helps to avoid
the formation of plaque in the future.

Figure-2.1: Regular divisor graph Ry(z15)
The regular divisor graph of commutative
ring Z, , n =1 has no well-known form
(certain form) it is changed with respect on
n (prime, composite, odd or even) to find
the certain form of the graph we must
classify the ring Z,, with respect to the order
of ring (n) as the following:

2.1 Regular divisor graph of the

ring Z, for all prime number
p >3

The ring Z,, is regular ring for all prime p,
since Z, is a division ring and every
division ring is a regular ring. The regular
divisor graph of the ring Z, is special graph,
for all non-zero element a € Z,, there
exist a=' € Z, such that a and a' are
adjacent.
Theorem 2.1.1 The regular divisor graph of
the ring Z,, is bipartite graph and
Rs(Z,) = (p;3) K, where K, is a
complete graph of order two.
Proof: Since the ring Z, is division ring
then Z,, is regular, it means for all a € Z,
a is a regular element. Then the vertex set
v(z,) = Z,—{0}, two elements 1 and
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p—1 in Z, are self-regular and self-
inverse

1.1.1=1 and (p—-D2 (-1 =(p-—-
1) and they make a loop in the regular
divisor graph so we exclude 1 and p — 1 in
the vertex set,

then [V(Z,)|=p —3,andeacha € Z,, a
is adjacent with a!
( a;.ait.q; = a;) for all a; € Z,) by the
regularity so we have two types of vertices
such that V,(Z,) = {ay,ay, ...,a;} and
Vo(Z,) = {a7t, a3t ..., a; "},
and each element in V; is adjacent with only
one element in V5, since the inverse element

is unique. There is no another adjacent
vertex in the graph.

And we have exactly ”2;3 vertices in both

sets. Then the regular divisor graph of the
ring Z,, is bipartite graph and have exactly

P=3  vertices in each partite set and

Ro(2,) = =2k, .

Example 3: Consider the ring Z;; ,p =
11

The non-zero regular elements of
Zy, are r*(Zy1) =1{1,2,3,4,5,6,7,89,10}
the elements 1 and 10 are self-regular then
exclude them in the vertex set. And the
vertex set is V(Zy1) ={2,3,4,5,6,7,8,9}.
The regular divisor graph of z,, is shown in
figure-2.2-

6/4 9 8
Figure 2.2: Regular divisor graph Rs(z11)

Note that the vertex set of the regular
divisor graph®R4(z;,) contains two types of
vertices V: =1{2,3,5,7}and V, =
{6,4,9,8} each vertex in V; is adjacent with
vertex in V, respectability since a;. b;.a; =
a; for all a;.b; in V; and V, respectability
where b; = a;* then we get only K, from
each a; and b; since we have 4 vertices in
v, and V, then we get 4 copies of K, then
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our graph Ry(z;,1) = 4K, and it is a
bipartite graph.

2.2 Regular divisor graph of the

ring Z, ,

n =
qp (q,p are prime number and q < p)
In this case for n = q.p , the regular divisor
graph has a special shape and different
properties. To get the graph of the ring Z,,,,
we first gave the following example.
Example 4: Consider the
Zyo ,Where q=2,p=5
Z4 is regular ring and we get the graph

shown in the figure-2.3-
5

ring

6 2 8 4

Figure2.3: Regular divisor graphR4(z10)

Some elements in the set of regular

elements r*(Zy,) ,{1,4,5,6,9} they make a

loop in the graph, then we exclude them

self-regularity in the vertex set because our

graph is simple.

The properties of the graph Ry(Z10)

1) P has the maximum degree deg(p) =
p — 1 itisthe center of graph

2) Two vertices (p—1) =4 and (p+
1) = 6 are end vertices

3) Contains one cycle of length 4

4) The degree sequence IS
{4,3,3,2,2,2,2,1,1}

5) The gi(R4(Z10)) (= w(Ry(Z10)) = 3

6) Dim(Ry(Z1o)) = 2

7) p?=p and (p+1?=p+1 are

idempotent elements.

2.3 Regular divisor graph of the ring
Z,p, for all prime number p > 2

In general, the regular divisor graph of the
ring Z,, , Ry(Zp) has a vertex set V(Z,,)
of non-zero distinct regular elements, since
the ring of Z,,, is always regular, then the
vertex set V(Z;,) is non-empty set, the
edge set E(Z,,) is the set of edges ab,

where a and b are adjacent with respect to
regularity. We divide the vertex set in to
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two partite sets with respect to the
adjacency of the vertices as a regular
element in the regular ring Z5,, .

V(ZZp) = Vl(ZZp) U VZ(ZZp) )
where V; and V, are two partite sets
of V(Z;p) such that

Vi(Z2p) ={135,...0 — 2,p,p +

2,...,2p — 1} = odd elements, contains all
odd regular elements where they are unit
elements except p (where p is idempotent
element in Z5),).

Vo(Zyp) ={2/4,6,...,2(p — 1D} , contains
even regular elements.

The first partite set of vertices V; has
exactly p vertices and the second partite set
V, has exactly (p —1) vertices. Two
verticess (p—1) and (p+1) are end
vertices where they are adjacent with two
regular  elements 2p—1 and 1
respectability. When this last two vertices
are adjacent with p.

Proposition 2.3.1: The idempotent
element p in the ring Z,,, is center of the
regular divisor graph R4(Z>,) .

Proof: Since p is idempotent element in the
ring, then p? = p. We have to prove that p
has the maximum degree in the graph, p is
regular element and its adjacent as a vertex
with all vertices in the first partite set V;
(odd or unit elements) of the vertex set
V (Z,p)of the graph as follow:

for any a; €V, p.a.p=pia; =
p.a; =p,a; #p

since q; is odd, thena; =2m + 1 form =
0,1,2, ...

Then pta;=p.a;=pC2m+1) =
2mp+p=p
since  V,(Z,,) contains exactly p

vertices, we exclude p, then the deg(p) =
p — 1. And p have no other adjacency.
Now we must calculate the degree of all
other vertices in the graph R,;(Z,,) as
follow:

This ring Z,, has another idempotent
element (p + 1) and it is adjacent only with
the vertex 1 in the regular divisor graph
Rs(Z2p), then deg(p+1)=1.
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The vertices ai in V, and b;inV, are
adjacent together as follows.

In V; and V,, the unit elements are
adjacent together each ai with a;~! and
b, with b,”' , but two elements
1 and 2p — 1 in V; are their own inverse
and they are adjacent with p+1 and p-1 in
V> respectively rather than the adjacency
with vertex p as follow:
p+D.1Lp+D=(@P+1D%1 = (p+
12 =p+1 (idempotent)

and (p—-1).2p-1D.(p-1) =(@-
D2.(2p—-1)

=(@P*-2p+1.2p—-1) = (2p° -
4p2 +2p—p?+2p—1)
=2p—4p+2p—p+2p-—

1 since p is idempotent )02 =p
=4p—4p—-p+2p—1 = (p-1). Then

deg(1) = deg(2p—1) = 2.

In another hand two vertices p-1 and p+1 in
V, are two end vertices, they are of degree
one.

We proved that the vertex p has a maximum
degree in the regular divisor graph, then p
is center of the graph R4 (Z5)).

Remark: To describe the regular divisor
graph R4(Z,) we need to define a new
operation in graph theory we called it half
join and denoted by @&, means the join
operation between two graphs when we
take half number of vertices in the second
graph.

Definition 2.3.3 The half-join operation
between graph G (pq,q:) Wwith r-regular
graph H(p,, q,) is defined by joining the
vertices of the graph G (py,q;) with r
numbers of vertices of r-regular graph
H(p,, q,) is denoted by G & , H such that
V(G &, H)=V(G)+V(H) =ps+p;
E(G&,H)=E(G)+E(H)+{uv;:ue

Gandv;, €H,i=12,..,1}=q; +q, +
Pip2

T
Theorem2.3.4: The regular divisor graph
of the ring Z,,, (for all prime number p = 3

) is

-3
md(ZZp) = ky(+2 2pp U (pT) C4)
Proof: The vertex set of regular divisor
graph R4(Z,,) except center p is partition
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in to two partite sets relation with regularity
property.

Vi —{p} contains all odd elements (unit
elements), V; = {1,3,5, .....,2p — 1} — {p}
V, contains all even elements, V, =
{2,4,6,..,2(p — 1)}, each sets contain
exactly p-1vertices.

the elements in V; — {p} are unit elements,
then they are adjacent each together
a; with a7,V a; € V; — {p}. In the other
hand b; € V, is adjacent with a; € V; — {p}
and is adjacent with b € V, since b; =
bi' a;. bi and bi = blb: bi .

b €V, is adjacent with a;* € V; — {p}
and is adjacent with b; € V, since b;” =
b7 .a;*.b7 and b] =b;.b. b, for all
i=123,..,p—3, these relations make
the cycle C, (exactly (”2;3)64), but the two

elements 1 and 2p — 1 in V; are adjacent
with two elements p+1and p—1inV,
respectability to makes the path P, since
p+1D21=(p+1)? =p2+2p+1 =
p + 1 since p is idempotent (p? = p)
Ad(p-1D%2p-1D=@-1).

Then now we have the part (2p, U

(%) e,

Now, the center is K; and since p € V; (the
center of graph) (proposition 5.1) and have
maximum degree since it is adjacent with
all other vertices in V; (p=p.a.p ,
VYa € V; ) then p is adjacent with one
vertex of each path part P2 ( we have 2p,)
we get p(+, 2p,, in the other hand p
adjacent with 2 vertices of each cycle Cs4

(we have exactly pT_g €y ), SO we get

k1(+2(2p2U(pz;3) c,) by the new

operation, implies that
-3

Ro(Zap) = ke (+2(20 U (52) c) A

shown in figure-2.4-

Figure 2.4: general form of the regular
divisor graph R 0 (Z 2p)
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Remark: In figure-2.4- b, = a7 +p ,
by =a,+pand b, =a;'+p , b] =
a;+p

Corollary 2.3.5: The regular divisor
graph R4(Z,,) has two end vertices for all

p inthering (Z;,) .

Proof: The two vertices are p —
1 and p + 1 are in the second partite set
V, of vertex set V(Zy,) ,

Since p + 1 is one of the idempotent
elements in the ring, then (p + 1)2 =p +
1

up to the regularity of the (p + 1) its
adjacent with only one vertex 1, and the
other p — 1 is regular with respect to

(2p — 1) also we exclude the self-
regularity by the same reason.

(p—1*@2p—-1) =2p>—3p” +4p -
1=p—1,since (p is idempotent)

There exists an edge e, joins these two
vertices and no other edges, deg(p — 1) =
deglp+1) =1

Proposition 2.3.6: The regular divisor
graph R,(Z,,) contains (1’2;3) cycles of
order 4.

Proof: In the fact that we have always two
end verticesp +1 and p — 1 adjacent
with

1 and 2p — 1 respectability and they are
the only two vertices of degree one.

All the other vertices in V; —
{p} and V/, are adjacent together as follow
to make the cycle c,

(al', ai_l) ) (bi; b:), (ai: bi),and (ai_lr bLN)

Since we have p — 1 vertices in each
partite set we exclude two vertices in each
partite sets then we have (p7_3) cycles of

length 4.
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Corollary 2.3.7: The regular divisor graph
R4 (Z3p) for p>2, is planner graph.

Proof: By theorem 2.3.4 clearly has no
crossing number in the regular divisor

graph R4(Z,,) then it is planner graph.

Proposition 2.3.8: The clique number
w(G) of the regular divisor graph
Rs(Z,p) is equal 3.

Proof: The regular divisor graph of the
ring Z,,, is planner graph and the smallest
cycle in Ry(Z,, ) is Cs obtained from the
adjacency between the vertices p, a; , a; *
then complete subgraph is k5 . And the
order of k4 is equal to 3.

Corollary 2.3.9: The clique number equal
to girth in the graph Ry (22, )

0 (Ro(23p)) = 9 (Ro(Z2)) = 3

Proof: It is clear that the shortest cycle in
the graph R,(Z,,) is C3 and length of this
cycle is three then girth of the graph is
equal to 3 and cligue number=3.

Proposition 2.3.10: The dimeter of
regular divisor graph R(Z,,) ,

Dim (Ro(Zz)) =4 -

Proof: In the general form of the graph
R4(Z,,) that it is shown in the figure-2.4-
it is clear that the distance between p with
a; forall a; € V; — {p} isequal to 1, the
distance between p with b; for all b; € V,

is equal to 2, the distance between a; for
all a; € V; — {p} isequal to 1 or 2, the

distance between a; with b; is equal to 1 or

2o0r3 foralla; €V, — {p} and b; €V,
the distance between b; is equal to 1 or 4
forall b; € V, , So, the maximum distance
in the graph R,(Z,, ) is equal to 4, Then
Dim (Ro(Z)) = 4

Theorem 2.3.11: Chromatic number

X (Ro(25)) =3 .

TJPS

Proof: The vertex p is adjacent with all
vertices in V; — {p}and forall a; € V; —
{p} there exists a; * € V; — {p} such that
a; is adjacent with a;*, then they must
have different color, the vertices in V, they
are adjacent together and adjacent with
some vertices in V; by respect to the
regularity p + 1,p — 1 are adjacent with
1,2p — 1 respectability, then if p and p +
1,p—1 areredall a;, b;” with 1 and 2p —
1 take another color say blue and a;* with
b; take another color, so we use three
different colors to coloring all vertices in
the graph R4(Z,,) As shown in figure-
2.5-. Then

X (ma(zzp)) =3.

Figure 2.5: chromatic number for the
general form in the regular divisor graph

Ro(Z,p).

Definition 2.3.12: Butterfly graph B, .,
is a graph obtained from 2 path P, and n
cycle Cs identifying in one vertex r called a
root as shown in figure-2.6-.

Figure 2.6: Butterfly graph B ,c,
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Theorem 2.3.13: The regular divisor graph
Rs(Z,,) is Butterfly graph B c, Of

L&D
. 3p-5 .
order p and size 5 by removing all even

vertices from the vertex set V(Z5,) -
Proof: Since the vertex set of regular
divisor graph R4(Z,,,) is partition in to two
partite sets relation with regularity property.
v, ={1,3,5,.....,.2p — 1}

V, ={2,46,..2(p — 1D} V; —{pland V,
has exactly p — 1 vertices. If we remove the
even vertices and all the incident edges
from the vertex set V(Z,,) so only the first
part of vertex set remains and since p €
I, is the center of graph (proposition 2.3.1)
and have maximum degree since it is
adjacent with all other vertices in V; (p =
p.a;.p, Va; € V; )and the elements in
V; —{p} are unit elements, then they are
adjacent each together a; with a;*,V a; €
V; — {p} then p with a; and a;* makes the
cycle C5 but the two elements 1 and 2p-1 in
I, are self — regular then they do not
adjacent with it is inverse and they are
makes two path P, . Since |V; — {p}| =

p—1theni=1,23, pzi

Then the graph we got from V; is Butterfly

graph Bll(pT—B)CB . As shown in the figure-
2.7-
a1 1 2p-1

a _
1 a; 1
a
3 a,
agl
-1
a,

Figure 2.7
2.4 Regular divisor graph of the ring
Z3, for all prime number p > 3
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The Regular divisor graph of the ring
Z3p, p is prime number and p > 3, different
graph and has different properties.

In this section we will study the properties
of the regular divisor graph R;(Z3,).

The ring Zs,, is regular ring for all prime
number p > 3 and the regular divisor graph
of this type of ring has different shape or
special case since the vertex set V(Z3,) of
this ring is different from the vertex set of
the ring Z,, certainly we get a different
graph with special cases. First, we give an
example to show the regular divisor graph
of Zs, .

Example 6: Consider the ring Z;s,q =
3and p=5

The vertex set V(Z,5) = {1,2,3, ...,14})
the regular divisor graph Ry (R) of thering
R = Z,5 is shown in figure -2.8-

s

6 s, 1z E

7 3 a

o

Figure 2.8: Regular divisor graph Ry(z;5)

The properties of the regular divisor graph

Ro(215)

1) Center Ry(z15) = {p, 2p} since
deg(p) = deg(Zp) =p—1

2) P+12p=(6,10) are idempotent
elements

3) The vertices 4,5,6,9,10,11 = {p —
1,p,p+12p—1,2p,2p + 1} are two
sides regular.

4) gi(Ro(215) )= w(Ro(215) ) = 3

5) The regular divisor graph Ry(z;5) is
planner connected graph

6) Dim (Ro(z15)) = 4

7) This graph contains one circuit (c,eec,)
of order 6

8) |Ra(z15) | =14 , E(Ro(z15)) = 19

To explain how we study the cases of the
regular divisor graph of the ring Z3, , we
have to give another example to show the
different graphs with respect to the
adjacency between vertices.
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Example 7 The regular divisor graph of the
rng Zs; = Zy;

V(Z21) = {1,2,3,4, ...,20}

and E(Rg(z15)) = {(a,b) ,a =

a.b.a or b=b.a.b Ya#b+#0 €
ZZl}

The regular divisor graph of the ring Z,, is
shown in figure -2.9-

7

Figure 2.9: Regular divisor graph Ry(z,1)

The properties of the regular divisor graph
Ro(221)

1) Center = { p,2p}={7,14}
deg(p) = deg(Zp) = 6

P and 2p + 1 are idempotent
Self-regular elements
{6,7,8,13,1415} ={p — 1L,p,p +

1,2p — 1,2p, 2p + 1} are loops

sine

2)
3)

4)
5)
6)

7)

¢i(R9(221))= 0(R5(221))=3

Dim (Ry(221)) =4

The regular divisor graph Rs(z,1) is
connected planner graph

This graph contains two circuit (c,eec,)

of order 6
When we compare these two rings in the
examples 6 and 7 and study the properties
of their regular divisor graphs in figure -
2.11- and figure -2.12- we get the
following:

1)

2)

3)

4)

e={p+12p} in

In each case the graph has two centers
of greatest degree they are p and 2p
The graph in each case connected
planner, grith and clique =3 , with
diameter =4.

Order of graph |Ry(zsp) | =3p —

1 and E(ERd(le)) = @

The idempotent elements are different
in each case, when

Zis for q=

3and p=5.
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and e~ ={p,2p+1} in Z,; for q =
3and p=7

in Ry(z15) the first idempotent element
p+1=6 is adjacent with 1and 11 =
2p+1

While the second idempotent 2p = 10 s
adjacentwith 1 and p—1=4

But in the ring Z,, , the idempotent
element 2p+1=15 is adjacent with vertices
1and p+1=8,

And the second p=7 is adjacent with 1 and
2p-1=13.

For this reason and depending on the
adjacency between the vertices as regular
element in the ring Z3,, in general we have
two cases.

Now to study the regular divisor graph of
the ring Z3,, we should make this study in
to two different cases according to the
adjacency of idempotent elements as a
vertex in this graph.

For these two cases we need to give the
following figures:

figure-2.10- and figure-2.11-, shows two
general cases of regular divisor graph of the

ring z,

2p+ b by ees by b p-1

2p

Figure 2.10: General form of Regular
divisor graph R4(z3,)

2p+ TU o eas a, art 3p-1

2p-1

P-1

2p

Figure 2.11: General form of Regular
divisor graph R4(z3p)

As shown in the figure 2.10 and figure 2.11
In general, the vertex set V of the regular
divisor graph of the ring Z5,, is:
V(Re(23p))=1{1,2,3,........3p — 1}
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To justify this, we partition this set of
regular divisor graph R4(z3,) into three
partite sets as follow:

Vi(Zsp) ={Lp,2p,p —12p - 13p —
1,p+12p+1} these vertices make
border of the graph, then they are vertices
of circumference of graph, some elements
in V; are self-unit and others are non-unit.
Two vertices p and 2p in V; are centers and
have maximum degree (p —1) and the
other vertices of degree 2.

The second partite set V,(Z3,) ={a;: a; is
unit element for all i=1, 2,.... 2(P-3)} and
they are exactly (2p — 6) vertices in the
regular divisor graph.

Vs(Zsp) = { bj, j=12,.. (p—3), all
other non-unit elements such that they are
adjacent together by regularity} ={ 3k, k =
1,2,..(p - 1}

Then  V(Zsp) =Vy(Zsp) U Vy(Z3,) U
V3(Z3p)

V(Zsp)| =3p—1

|V1(Z3p)| =8

|V2(Zsp)| =2(p-3)
|V3(Z3p)| =p—3

Now we discuss the two cases for regular
divisor graph R,(z,,) for all prime
number g = 3 and p > 3 as follow:
Casel: For =3 and p=7,13,19, ...

In this case p as a center is adjacent with the
vertices {1,47,..3p—2}—p 1,
except {1,2p — 1} c V;and 2p is adjacent
with the wvertices {2,5,8,..,.3p — 1} —
2p cV, except {p+ 1,3p—1} cV; and
all elements in V, are unit they are adjacent
each element with its inverse. In this case p
and 2p+1 are idempotents [p? =
p and (2p + 1)? = 2p + 1] but 2p is not
idempotent and (2p)? = p , but the vertices
12p—13p—1,p+1 in V; are self-
inverse and the verticesp — 1,2p+1inV;
are non-unit elements.
Proposition 2.4.1: In casel:
deg(2p+1) = deg(p—1) =2
that:

i) The vertex 2p+1 € V; is adjacent
with the vertices land p + 1inV;

such

167

TJPS

i) The vertex p —1 € V; is adjacent with
the vertices 2p —1 and 3p—1 inV;
Proof:

) According to the regularity
Cp+121=02p+1).1 =2p+1

And (p+1Di(p+1)= =(2p+
D.p+1D)

=2p*+2p+
p + 1 (p is idempotent)

=3p+2p+1

=2p+1

Then the vertex (2p + 1) is adjacent with
two vertices 1 and (p+1)

ii)In the other hand (p-1) is regular with
respect to two elements (2p-1) and (3p-1),
then

p-D%Q2p-1) =@ -2p+
1).2p—-1)

=(p —2p +1).(2p — 1) sinceinthiscase
p is idempotent (p? = p)
=(1-p).2p—-1) =2p—-1-2p°+p
=p — 1

And  (@p-1D%2GBp-1) =(@*—-2p+
1).(3p — 1) (p is idempotent p? = p)
=1-p).GBp-1=3p—-1-3p°>+p
=p — 1

Then we get the adjacency of this vertex
with two vertices (2p-1) and (3p-1) to get
the result.

Case2: For q =3 and p =5,11,17,...n
this case 2p and p + 1 are idempotents
[(2p)? =2p and (p+1)* =p +1]
But p is not idempotent and p% = 2p . in
this case p is adjacent with the vertices
{2,58,...3p — 1} —p c V, except {2p +
1,3p — 1} c V;and 2p is adjacent with the
vertices

{1,4,7,..3p—2}—2p c 1, except
{1,p —1} c V;and all elements in V, are
adjacent with its inverse.

In this case the wvertices 1,p —1,3p —
1,2p + 1 in V; are self-inverse then there
are no edges joins them.

Proposition 2.4.2: In case2

i)The vertex p+ 1 € V; is adjacent with
the vertices 1and 2p + 1inV;

ii)The vertex 2p — 1 € V] is adjacent with
the verticesp —1 and 3p—1 inV,,
Thendeg(p+1) = deg(2p—1) =2
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Proof:
i) (p +1)%.1=(p+ 1) sinceinthis
case p + 1 is idempotent

And (p+ 12 2p+1D)=@(@+1).R2p+
1) (alsop + 1 is idempotent)
=2p®+p+2p+1 =20Q2p)+p+2p+
1 since p?>=2p
=4p+p+2p+1 =6p+p+1 =p+
1

i) 2p—-1D%@-1) =(2p)?
D.(p—-1)
= Cp—4p+1.(p-
1) since in this case (2p)* = 2p
=2p2—4p?+p—2p+4p—1
=202p)—2p+p—2p+4p—1
4p? = (2p)* = 2p and p* = 2p
=2p—1

And  (2p-1D%Gp-1 = ((2p)* -
4p+1).3p—-1)
= (2p—4p+1).G3p -
1) since in this case (2p)% = 2p
=6p2—12p*>+3p—2p+4p—1 =
6(2p) —122p)+3p—-2p+4p—-1 (
p? = 2p)
=12p—24p+5p—-1=5p—-1=2p—-1
It is worth mentioning in both cases for all
b € V3 there is two elements in V, such
that b is adjacent with them.
Proposition 2.4.3: The regular divisor
graph R4(z3,)  contains == (p ) subgraphs
of the for circuit (Cy4e+C,). (C4~-C4 denoted
the identifying an edge between two cycles)
Proof: As it appears in figures 2.10 and
2.11 the vertices in V, be divided into two
parts the vertices of one of the parts are
adjacent with the vertex p and adjacent with
a vertex in V3 such that a; with b; and a;” 1
with b/ the vertices of the other part in 1,
are adjacent with the vertex 2p and adjacent
with a vertex in V3 such that a; with b; and
ai ! with b;", in both parts they are adjacent
together a; with a; ', in the other hand the
vertices in Vsthey are adjacent together by
regularity b; with b;"then one of the part in
7, makes a cycles C, as follow
(a, ai ), (ai, by), (a7 %, by7), (by, b))

some a;,a; ' € V, and b], T EV;

—4p +

since

for

168

TJPS

And another part of V, with the vertices in
V5 makes the cycles C, as follow
(ak'alzl)ﬂ(ak'bj) (alzll ) ( j ]
some a, a;* € V2 and b],b] eV,
The edge (b;, b;") is identifying between
both cycles then we get the circuit C,eC,
since  |Va(zsp)| =20 -6 and
[Va(zsp)| =p—3 so we have exactly
@3 ircuit CyoeCy .

Corollary 2.4.4 The regular divisor graph
of the commutative ring Zs, is connected
planner graph.

Proof: Itis clear in figure-2.10- and figure-
2.11-has no crossing number in the graph
Rs(z3p) and all vertices are adjacent, then
this graph is connected and planner graph.
Definition 2.4.5: Let G and H be two
graphs the inserting edge between two
graphs is denoted by G : H ife = uv is an
edge joins a vertex v € G with a vertex u €
H such that

V(G:H)=V(G) +V(H)

E(G : H=E(G) + E(H) + 1, and : denoted
the inserting of two edges between them
such that

V(G:H )= V(G)+V(H) ,
H)=E(G)+E(H)+2

Theorem 2.4.6: The regular devisor graph
of the ring Z3, is a new graph of the form
Ry(Z3py = p i H;:2p, where p and 2p are
belong to the boarder part Cs, and H;, i=1,
2, ..., p- 3/2 are isomorphic subgraphs of the
form (C,+C,) .(: is denoted an inserting of
two edges from p or 2p to Hi).

Proof: (Case 1)

It is clear that in case one the vertex p is
adjacent with 1,2p — 1 and the vertex 2p is
adjacent with p + 1,p — 1, by proposition
2.4.1 the vertex 2p + 1 is adjacent with the
vertices 1,p + 1 and the vertex p — 1 is
adjacent with the vertices 2p —1,3p — 1
then the wvertices { p,2p,12p—1,p+
1,3p—1,2p + 1,p — 1} make a cycle Cg
(border of the graph) and by proposition
2.4.3 we have exactly

P=3) subgraphs (C,esC,) since the vertex
p is adjacent with {1,4,7,....3p — 2} —p C

for

E(G:
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v, and 2p is adjacent with the
vertices {2,5,8,...,3p — 1} — 2p c V, then
p and 2p inserting two edges to the vertices
a,a;* inV, and a;,a;* is a part of H;
then Ry(Z3p) = piH; i 2p

For (case2):

It is clear that in case two the vertex p is
adjacent with 2p + 1,3p — 1 and the vertex
2p is adjacent with 1,p — 1, by proposition
2.4.2 the vertex p + 1 is adjacent with the
vertices 1,2p + 1 and the vertex 2p — 1 is
adjacent with the vertices p —1,3p — 1
then the wvertices { p,2p,1,2p—1,p+
1,3p —1,2p +1,p — 1} make a cycle Cg
(border of the graph) and by proposition
2.4.3 we have exactly

(p;_S) subgraphs (C,e+C,) since the vertex

p is adjacent with {2,5,8,....3p — 1} —p C
v, and 2p is adjacent with the
vertices {1,4,7,...,3p — 2} — 2p < V, then
p and 2p inserting two edges to the vertices
a,a;* inV, and a;,a;* is a part of H;
then Ry(Z3p) = p i H; i 2p.
Proposition 2.4.7: The regular divisor
graph of the ringZsp, Ry(Z3,) is double
butterfly graph by removing the non-unit
vertices except {p, 2p}from the vertex set of
the graph.

Ro(Z3p) = 2By nc,
i- for V(!R(,(Z3p))- V3 V) {p - 1,2p +
1} in case one.
or V(ma(Z3p))' V3 U {p + 1,2p -
1} in case two.

-3
==
2

Proof: The wvertex set of the graph
(R4 (Z3p is three partite sets as follow:
Vi(Z3p) ={Lp,2p,p —1,2p - 13p -
1,p+12p + 1}

V2(Z3p) = {a;: a; is unit element for all
i=12,...2(P —3)}
V3(Z3p) = { bj j=
other non-unit elements}
1,2,..(p — 1}

In case one

The nun unit vertices except {p,2p} are
equal to the verticesin V; U {p — 1,2p + 1}
and by removing these vertices remain the
vertices {p,2p,12p—1,p+ 13p—1} C

1,2, .. (p—3), all
={ 3k k=
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7, with all vertices in V, , since in case one
the vertex p is adjacent with the vertices
{1,4,7,..3p—2}—p c 1, except
{1,2p — 1} c V;and 2p is adjacent with the
vertices {2,58,..3p—1}—-2p cV,
except {p + 1,3p — 1} c V; , then p with
the vertices 1,2p — 1 make two paths P,
and 2p with the vertices p + 1,3p — 1 make
two paths P, and all other vertices that are
adjacent with p and 2p they are in V, and
they are unit each a; € V, is adjacent
witha;* €V, , So, (a;,pa;') and (
a;,2p,a;') make the cycles C; then we
get two butterfly by removing all nun-unit
elements except p,2p in the graph
(R4 (Z3p)), as shown in the figure-2.12-

In case two

The nun unit vertices except {p,2p} are
equal to the verticesin V; U{p + 1,2p — 1}
and by removing these vertices remain the
vertices {p,2p,1,p—12p+13p—1}C
7, with all vertices in V, , since in case two
the vertex p is adjacent with the vertices
{2,58,...3p—1} —p cV, except {2p +
1,3p — 1} c V; and 2p is adjacent with the
vertices {14,7,..3p—2}—2p cV,
except {1,p — 1} c V; , then p with the
vertices 2p + 1,3p — 1 make two paths P,
and 2p with the vertices 1,p — 1 make two
paths P, and all other vertices that are
adjacent with p and 2p they are in V, and
they are unit each a; € V, is adjacent
witha;* €V, , So, (a;,p.a;') and (
a;,2p,a;*) make the cycles C; then we
get two butterfly by removing all nun-unit
elements except p,2p in the graph
(Rs(Z3p)), as shown in the figure-2.13-
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2p-1

Corollary 2.4.8: The clique number of
regular divisor graph R,(z3;,) is equal to
3

w(Ro(z3p) =3

Proof: From the fact that this graph is
planner graph and the smallest cycle in
regular divisor graph Rs(zz, ) is C3
obtained from the adjacency between the
vertices p,a;_y,a;y and 2p,a;a;t for
all a;_q,a;%,a;,a;* €V,  then the
smallest complete subgraph is k5 .
Theorem 2.49 Chromatic
X (Ro(255)) = 3

Proof: For casel we give the same color to
coloring the wvertices p,2p,2p +1,p —
1,{by, ..., b;} and we use another color to

number

Figure 2.13

170

coloring the vertices 1,2p — 1,p + 1,3p —
1,{a7t, ...,a; Y a; Y, ...,ag'} . we use
another color to coloring the vertices
Aaq, e a;,ai44, - ag ), {b7, ., b7}

for case2 we give the same color to coloring
the vertices
p,2p,p + 1,2p — 1,{by, ..., b;} and we use
another color to coloring the vertices
1,2p+13p—1,p —

1,{ai%, ...,a;  al, .. a'y give
another color to coloring the vertices
{ai, ..., a;,ai4q, - ag}, {b7, ...,, b}, S0 in
both cases we use only three different colors
to coloring all vertices in Ry(Z3,). As
shown in the figure-2.14-Then the
chromatic number of R4(Z3,,) is equal to 3.

X (ma(z3p)) =3
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Figure 2.14: chromatic number for the general form in the regular divisor graph 9{6(23,,).

Proposition 2.4.10: Dimeter of regular
divisor graph Ro(Z3p)
Dim (Ry(Zs,)) = 4

Proof: For case 1, in the general form of the
graph R4(Z3,,) that is shown in the figure-

2.10- Vl(Z3p) ={1,p,2p,p — 1,2p —
1,3p—1,p+12p+1} the distance
between the vertices in V/; are

d(p,2p) =4, d(p,1) =d(p,2p—1) =
1,

dpp+1) = dp3p-1 =

3, dlp,2p+1) =2,

d(zp' zp - 1) =3,
d2p,p+1)=1,d2p,3p—1) =1,
d(2p,2p+1) =2,
d2p,p—1)=2,d(1,2p—1) =2,
d(L,p+1) =2,
d(13p—1)=4,d(1,2p+1) =1,
d(l,p—1) =3,
d2p—-1,p+1)=4,d2p—13p—
1)=2,dR2p—-12p+1)=3, d(Q2p-
L,p—1)=1,dp+13p—-1) =2,
dp+12p+1) =1, dp+1,p—-1)=
3,

dBp—12p+1)=3,d3Bp—1,p—
D=1,

d2p+1,p—1)=4.

The distance between p with a; equal to 1
or 3forall a; € V, , the distance between 2p
with a; equal to 1 or 3 for all a; € V, , the
distance between p with b; equal to 2 for all
b; € V5, the distance between 2p with b;
equal to 2 for all b; € V; ,the distance

171

between a; equal to 1 or 2 or 3 or 4 for all
a; € V, , the distance between b; equal to 1
or 4 forall b; € V5, the distance between a;
with b; equal to 1 or 2 or 3 for all a; € V;
and b; € V3,

And for case 2

in the general form of the graph R4(Zs,)
that is shown in the figure-2.11- V,(Z5,) =
{Lp,2p,p—12p—13p—1,p+12p +
1}

the distance between of vertices in V; are
d(p' Zp) = 4' d(p' 1) = 3' d(p' Zp -

1) =2,

1, dip,2p+1) =1,

dipp—1) =3, d(2p,1) =1,
d(2p,2p-1) =2,

dQ2p,p+1) =2, d2p,3p—1) =3,
d(2p,2p+1) =3,
d2p,p—1)=1,d(1,2p—1) =3,

d(l,p+1) =1,
d(1,3p—1) =4, d(12p + 1) = 2,
d(l,p—1) =2,

d2p—1,p+1)=4,d2p—13p—
1)=1d2p—-12p+1) =3, dQ2p-—
,p—1)=1,dp+13p—-1) =3,
dp+12p+1) =1, dp+1L,p—-1)=
3,

dBp—-12p+1)=2,dBp—-1,p—

1) =2,

d2p+1,p—-1)=4.

The distance between p with a; equal to 1
or 3forall a; € V, , the distance between 2p
with a; equal to 1 or 3 for all a; € V, , the
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distance between p with b; equal to 2 for all
bj € V3 , the distance between 2p with b;
equal to 2 for all b; € V; ,the distance
between a; equal to 1 or 2 or 3 or 4 for all
a; € V, , the distance between b; equal to 1
or4forall b; € V5, the distance between a;
with b; equal to 1 or 2 or 3 for all a; € V;,
and b; € V5

So, the maximum distance in the graph
Rs(Z3p)  equal to 4,  then

Dim (Ro(Z5)) = 4
1. Connectivity of the regular divisor
graph for finite commutative rings.

A graph G is connected if there exists at
least one path between any pair of vertices
in G other wise is called disconnected
graph. As shown in figure-3.1-, If G is a
disconnected graph component of G is a
maximal connected subgraph of G, number
of components in graph G is denoted by
C(G).C(G)isone if G is connected.

For any connected graph, a vertex u from
G is named a cut-vertex of G, if G —u
(remove u from G ) outcomes a
disconnected graph. A proper subset V € V
is a vertex cut set if the graph G —V is
disconnected, or trivial graph. The vertex
connectivity of a connected graph G is the
smallest number of vertices whose removal
makes G disconnected or trivial graph and
denoted by K(G), the graph is said to be k-
vertex connected or k-connected when

.....

L —

K (G) is the smallest size of a cut set of G it
means |V| =k .

And an edge e from a connected graph G is
named a cut-edge(bridge) of G if G —e
(remove e from G ) outcomes a
disconnected graph. A proper subset E c E
is edge cut-set if the graph G —E is
disconnected. The edge connectivity of
connected graph G is the smallest number
of edges whose removal makes G
disconnected and denoted by A(G). G is
said to be m-edge connected if A(G) is the
smallest size of edge cut-set, it means |E| =
m as shown in figure-3.2-

The subgraph H of the graph G is known a
Block if H is connected maximal subgraph
of G which has no cut-vertex and the graph
G is called Block itself if which has no cut-
vertices.[8],[11].

In this section we denote the minimum
degree vertex of the graph Ry(z,) by
6(Ry(z,)) , the vertex connectivity of
Ry(z,) is denoted by K(Ry(z,)) , and
A(Ry(z,)) is the edge connectivity of
fRd(Zn)

Theorem 3.1: In the regular divisor graph
for the ring (Z2,) (p is prime number and
p = 3) has only one cut-vertex, then is 1-
connected graph.

Proof: Since p is center of the graph
Rs(Z,,) which is greatest degree
deg(p) =p—1 , it is clear that by
removing the vertex p in Ry(Z,,) we get
the following graph show in the figure-3.1-

ay a.f' Zp — 1

l

b, by p— 1

Figure 3.1: cut-vertex in Ry(Z,,)

And this graph is disconnected graph, then
R4(Z,,) has only one cut-vertex and it is 1-
connected graph.

Theorem 3.2: The graph Ry(Z3,) (p is

prime number and p > 5) is 2-connected
graph.

172

Proof: Since p and 2p are centers of the
graph R,(Zs,) which are greatest degree
deg(p) =p—1 anddeg 2p) =p—-1,
it is clear that by removing the vertices p
and 2p in Ry(Zs,) (that shows in figure-
2.10- and figure-2.11-) we get the following
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graph show in the figure-3.2- and figure-
3.3-

p-1

Figure 3.2
2p+ 1 apl a;_ a;l 3p-1
p+l b b b b, >-1
1 a; az;! - a a;t Pp-1
Figure 3.3

And these graphs are disconnected graphs,
have two cute-vertices, then R4(Z3,,) is 2-
connected graph.

Theorem 3.3: The graph R,(Z2, ) has only
one cut-edge(bridge) and 1-edge connected.
Proof: The graph R,(Z2,) is connected
graph, has two types of vertices set V; =
{1,3,5,....2p — 1} and v, =
{2,4,6,...,2(p — 1)}, and has four types of
edges with respect to the regularity for the
ring Zy,.

Type one is the edges (p,a;) for all a; €
V, — {p} since p € V; is the center of graph
(proposition 2.3.1) and have maximum
degree since it is adjacent with all other
verticesin V; (p =p.a;.p, Va; € V; —
{r} )

Type two is the edges (a; a;t) for all
a;,a;t €V, — {p} since the elements in
Vi, —{p} are unit elements, then they are
adjacent each together a; with a;j*,V a; €
Vi —{p}.

Type three is the edges (a;, b;) for all a; €
Vi—{p} and b; €V, since b; €V, is
adjacent with a; € V; — {p}, b; = b;. a;. b;

Type four is the edges (b;, b;) for all
b, and b;” € V, since b; € V, is adjacent
with b;” € V, since b; = b;. b; . b; .

If we remove any edge from type two or
type three or type four the graph Ry (Z2,)
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still connected but if we remove the edge
(p, 1) or (p, 2p — 1) on type one we get the
new disconnected graph then the edge
(p,1) or (p,2p — 1) is bridge then the
graph R,(Z,,) has only one cut-edge
(bridge) and 1-edge connected.

Theorem 3.4: The graph Ry(Z5,) is 2-
edge connected.

Proof: If we look at figure-2.10- and figure-
2.11- in which them the general form of the
graph R4(Zs,,) is shown. We see that by
removing the edges (p,1) and(2p,p + 1)
or the edges (p,2p —1) and (2p,3p — 1)
in the first case and removing the
edges (p,2p + 1) and (2p, 1) or the edges
(p,3p—1) and (2p,p — 1) in the second
case we will get a new graph that is a
disconnected graph, this is the minimum
number of edges that removing in the graph
Rs(Z5,) we can get a disconnected graph.
Then the graph R4(Z3,,) has two cut-edges,
then the graph R,y(Zs,) is 2-edge
connected.

Remark 3.5

The graph R,(Z,, ) is connected graph and
since in every connected graph G, C(G) =

1, then C(ﬂ%a(zzp))z 1. But after

removing the wvertex p we get a
disconnected graph and number of
Components in this disconnected graph is
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pzisuch that the components are show in

the figure-3.4-

Figure 3.4: components

And the graph R4(Z,) is not blook since components is equal to 1 then number of
by (theorem 3.1) it has a cut-vertex p but components in the graph R4(Z5,) is equal
have subgraphs are block such that the to 1. But after removing the vertices p and
subgraphs are show in the figure-3.4- are 2pin ma(z3p) we get a disconnected graph
block subgraphs. and number of components in this
Then the graph ®,(Zy,) have 2= disconnected graph is pT“ such that the
subgraphs that are block subgraph. components are show in the figure-3.5- and
Remark: figure-3.6-

The graph R,(Zs, ) is connected graph and
since in every connected graph G number of

a a7l - a; a; 2p-1
-— L . >

P+1 as az ! .- a,; a; ! 3p-1

Figure 3.5

Figure 3.6
Theorem 3.7 §(Rs(22p)) = K Ro(22p)) Theorem 3.8 §(Ry(z3p)) = K(Ra(23p))
= A(Ro(22p)) = A(Ra(23)) -
Proof: In figure-2.4- it is clear the Proof: In figure-2.10- and figure-2.11- it is
minimum vertex degree is 1 such that two clear the minimum vertex degree is 2 such
vertices p+1 and p —1 have degree 1, that in both cases the vertices 1,p + 1.2p +
then & (Rd(ZZp)) -1 1,p—1,2p —1and 3p — 1 have degree 2.

Then §(Ry(z3p)) =2.

By theorem 3.1 the graph R is 1-
y graph Ry (2) By theorem 3.2 the graph R,(zs,) is 2-

connected graph then K (R =1,
grap ( "(Zzp)) _ connected graph then K (iRa(zgp)) = 2.

and by theorem 3.3 the graph R4(z,,, ) is 1- And by th 34 th - _

edge connected, then A(Siia(zzp)) =1. So, nd by theorem .4 the grap "(Z3p) IS

we get the result §(Ro(zzp)) = 2-edge connected, then/l(ﬁia(z3p)):2
KR (22)) = 2(Ro(22p)) . So, we get the result §(Ry(zsp)) =
K(Ro(23p)) = ARo(z3p)) -
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