
  

 

  
Tikrit Journal of Pure Science (2023) 28 (5):158-175 
Doi: https://doi.org/10.25130/tjps.v28i5.1587   

 

158 

 

 

Tikrit Journal of Pure Science 
ISSN: 1813 – 1662 (Print)  --- E-ISSN: 2415 – 1726 (Online) 

 

Journal Homepage: http://tjps.tu.edu.iq/index.php/j 

 

 

Regular Divisor Graph of Finite Commutative Ring  
𝐏𝐚𝐲𝐦𝐚𝐧 𝐀𝐛𝐛𝐚𝐬 𝐑𝐚𝐬𝐡𝐢𝐝𝟏,𝐇𝐚𝐭𝐚𝐰 𝐒𝐚𝐥𝐞𝐞𝐦 𝐑𝐚𝐬𝐡𝐢𝐝𝟐 

1,2Department of Mathematics, College of Sciences, Salahuddin University, Kurdistan, Iraq 

 

Keywords: Regular divisor graph, 

Vertex-connectivity, Edge-connectivity, 

Block.  

A r t i c l e i n f o. 
Article history: 

-Received:                                  09 Jan. 2023 

-Received in revised form:      13 Feb. 2023 

-Accepted:                                  14 Feb. 2023 

-Final Proofreading:                  24 Oct. 2023 

-Available online:                       25 Oct. 2023 

Corresponding Author*: 

Payman Abbas Rashid 

ABSTRACT 

Let R be a finite commutative ring with identity 1. 

We introduce a new graph called regular divisor 

graph and denoted by 𝕽𝟃(𝑅). We classify the finite 

commutative ring to get a special graph and we are 

going to study some properties of this graph, clique 

number, chromatic number, number of cycles, 

connectivity and blocks. 
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 هيةتالبيان القسم المنتظم للحلقة التبديلية المن

 2يدشهتاو سليم ر ، 1بيمان عباس رشيد
 كردستان، العراق  إقليم الرياضيات، كلية العلوم، جامعة صلاح الدين،  قسم 1

 ص خ لملا

  صمممني  لقد قمنا بت  𝕽𝟃(𝐑)لها  سمممميب ببيان القاسمممت المنتظت يرم   Rالحلقة المنتظمة   لىهبة، عرفنا بيان جديد يعتمد عتحلقة تبديلية من Rليكن   

، كما درسمنا صصما ت تلا البياتاخ من حيث درجة التلوين، عدد  ومتنوعةمن حيث العناصمر المنتظمة لنحصمع على بياتاخ صاصمة   Rالحلقة التبديلية  

 .صع والحواج  في تظرية البياتاخفبالبيان الممتعلقة اصرى   وصصا تالداراخ، عدد الرم  

Introduction 

Let R be a finite commutative ring with 

identity 1, an element 𝑎 ∈ 𝑅 is called Von 

Neumann regular if there exist  𝑏 ∈
𝑅  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎 = 𝑎. 𝑏. 𝑎 , a Ring R is Said 

to be a Von Neumann regular ring if all 

elements in 𝑅  are Von Neumann regular 

[1], [10]. We denote the set of Von Newman 

regular elements by 𝑟(𝑅)  and set of non-

zero Von Neumann regular elements by 

𝑟∗(𝑅) = 𝑟(𝑅) − {0}  . Taloukolaei and 

Sahebi introduced the Von Neumann 

regular graph 𝐺𝑉 𝑛𝑟 +  (𝑅)  of a ring R, 

whose vertex set consists of elements of R 

and two distinct vertices 𝑥  and 𝑦  are 

adjacent if and only if 𝑥 +  𝑦  is a Von 

Neumann regular element [2]. By taking 

advantage of their work, we have defined a 

new graph in this way, let 𝑅  be a finite 

commutative ring with 1. That for all non-

zero elements 𝑎  and  𝑏 in the ring R are 

adjacent if and only if 𝑎 = 𝑎. 𝑏. 𝑎  or  𝑏 =
𝑏. 𝑎. 𝑏  𝑎𝑛𝑑 𝑎 ≠ 𝑏  , this graph is called by 

regular divisor graph and denoted by 

𝕽𝟃(𝑅). with vertex set 𝑉(𝕽𝟃(𝑅)) consists 

of elements of  𝑟∗(𝑅) and edge 

set  𝐸(𝕽𝟃(𝑅)) = {(𝑎, 𝑏) ∶ 𝑎 =

𝑎. 𝑏. 𝑎   or  𝑏 = 𝑏. 𝑎. 𝑏 , 𝑎 ≠ 𝑏 ≠ 0 } .  
we have used some basic concepts in ring 

theory from [5],[8],[10]and used some basic 

concepts in graph theory from 

[2],[3],[4],[6]. 

Definition 1.1: [3] A graph 𝐺 is finite non-

empty set consist of two sets, the set of 

Vertices 𝑉(𝐺) and the set of edges 𝐸(𝐺).  

𝑉(𝐺) is a non-empty set of elements named 

vertices. While 𝐸(𝐺)  is the set (which is 

possible empty) of unordered pairs of 

vertices of 𝑉(𝐺) called edges. The order of 

the graph is the number of vertices which is 

denoted by 𝜂(𝐺) , that is 𝜂(𝐺) = |𝑉(𝐺)| , 
and the number of edges of 𝐺 is called the 

Size of 𝐺  and is denoted by 𝛶(𝐺), that is 

𝛶(𝐺) = |𝐸(𝐺)|. 
Definition 1.2: [4] The degree of a vertex 

𝑣 of a graph 𝐺 is the number of all edge’s 

incident to v in 𝐺. We denote the degree of 

the vertex v of 𝐺 by 𝑑𝑒𝑔(𝑣). The Center of 

a graph G is the vertex 𝑣 which has greatest 

degree. 

Definition 1.3: [3] A Walk  𝑊 in   𝐺 is an 

edge, starting at  𝑣1 and ending at  𝑣𝑗  such 

that consecutive vertices in 𝑊 are adjacent. 

A walk in which no vertex is repeated is 

called a Path. A path with n vertices is 

denoted by 𝑃𝑛 . A path that begins and ends 

at the same vertex is called circuit.  

A cycle with 𝑛 ≥ 3  vertices is denoted by 

𝐶𝑛 . 

Definition 1.4 Let 𝐺 be a connected graph, 

the eccentricity of vertex 𝑣 ∈ 𝑉(𝐺)  , 

denoted by 𝑒(𝑣) is the distance between v 

and a vertex furthest from v. The diameter 

of 𝐺 is the maximum distance between the 

pair of vertices, and denoted by 𝒟𝒾𝓂(𝐺). 

While the radius of 𝐺 denoted by 𝒓𝒂𝒅(𝑮) 

is the minimum distance between the pair of 

vertices. 

Definition 1.5 A complete subgraph of a 

graph 𝐺  is called clique of 𝐺 . And the 

maximum order of a clique of 𝐺 is called 

clique number od 𝐺 and denoted by 𝝎(𝑮).  

The girth of graph 𝐺  is the size of the 

smallest cycle in the graph and denoted by 

𝓰𝓲(𝑮). 

Definition 1.6: [5] The chromatic number 

of a graph 𝐺  is denoted by 𝝌(𝑮) . Is the 

minimum number of colors needed for 

proper vertex coloring of 𝐺 . 𝐺  is k-

https://doi.org/10.25130/tjps.v28i5.1587
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chromatic if 𝜒(𝐺) = 𝑘. (Where k is positive 

integer number) 

Definition 1.7: Let 𝑣𝑖   and   𝑣𝑗  be two 

distinct vertices of graph 𝐺1  and  𝐺2 

respectability. Two vertices 𝑣𝑖  and  𝑣𝑗  are 

identified if they replaced by anew vertex 

𝑣∗ such that all edges incident on  𝑣𝑖  and  

𝑣𝑗  are now incident on the new vertex  𝑣∗ 

and denoted by 𝑮𝟏⦁𝑮𝟐. 

Definition 1.8 (Double identifying) is the 

identifying two distinct vertices in the 

graphs  𝐺1 and 𝐺2,   denoted by 𝐺1⦁⦁𝐺2, and 

identifying an edge between two graphs say 

𝑒1 ∈ 𝐺1 and  𝑒2 ∈ 𝐺2 is denoted by  𝐺1 ⊶
𝐺2. 

2-Regular divisor graph of commutative 

ring 𝑍𝑛 

The commutative ring 𝑍𝑛  , 𝑛 ≥ 1  for n 

equal to (prime, composite, odd, or even), is 

regular ring or not regular ring but in each 

case, it has some regular elements 

depending on n. 

To study the regular divisor graph of the 

commutative ring 𝑍𝑛, which is (undirected) 

graph and symbolized by  𝕽𝟃(𝑍𝑛) , where 

two non-zero distinct elements in 𝑍𝑛, 𝑎 and 

𝑏 are adjacent as a vertex if and only if  𝑎 =
𝑎. 𝑏. 𝑎  𝑜𝑟  𝑏 = 𝑏. 𝑎. 𝑏    for the regular 

elements  𝑎, 𝑏 ∈ 𝑍𝑛  . the regular divisor 

graph of commutative ring 𝑍𝑛  is simple, 

undirected loop less graph 𝕽𝟃(𝑍𝑛)   with 

vertex set 𝑉(𝑍𝑛)   and edge set  𝐸(𝑍𝑛) =
{(𝑎, 𝑏): 𝑎 = 𝑎. 𝑏. 𝑎  𝑜𝑟  𝑏 = 𝑏. 𝑎. 𝑏 , 𝑎 ≠
𝑏 ≠ 0 ∈ 𝑍𝑛}. 

Example 1: The ring 𝑍18  which is not 

regular ring but have some regular 

elements, the non-zero regular elements 

𝑟∗( 𝑍18) =
{1,24,5,7,8,9,10,11,13,14,16,17}  ,the 

regular divisor graph  𝕽𝟃(𝑧18) is shown in 

figure-2.1, which is different from any other 

regular divisor graphs. 

Gingivitis and periodontitis are two 

conditions listed under the umbrella term 

periodontal disease. Periodontal disease 

refers to a range of conditions that affect the 

supporting tissues of the teeth [1]. 

Typically, one of the first indications of 

gingivitis is bleeding gums, which is a 

common symptom of the disorder [2]. In the 

absence of treatment, gingivitis can 

progress to periodontitis, which is 

characterized by the loss of periodontal 

attachment and alveolar bone and 

ultimately results in tooth loss. Antibiotics 

can be used to treat gingivitis [3].   

Dentists refer to the inflammation of the 

gums as gingivitis. It occurs as a result of 

inadequate tooth cleaning, which leads to 

the deposition of bacterial plaque on the 

surface of the teeth. Therefore, effective 

tooth brushing is vital for achieving enough 

food debris clearance, as it helps to avoid 

the formation of plaque in the future.  

Figure-2.1: Regular divisor graph 𝕽𝟃(𝑧18) 

The regular divisor graph of commutative 

ring 𝑍𝑛  , 𝑛 ≥ 1  has no well-known form 

(certain form) it is changed with respect on 

n (prime, composite, odd or even) to find 

the certain form of the graph we must 

classify the ring 𝑍𝑛 with respect to the order 

of ring (𝑛) as the following: 

2.1  Regular divisor graph of the 

ring 𝑍𝑝 for all prime number 

𝑝 > 3 

The ring 𝑍𝑝 is regular ring for all prime p, 

since 𝑍𝑝  is a division ring and every 

division ring is a regular ring. The regular 

divisor graph of the ring 𝑍𝑝 is special graph, 

for all non-zero element 𝑎 ∈ 𝑍𝑝  there 

exist  𝑎−1 ∈ 𝑍𝑝  such that  𝑎 and  𝑎−1 are 

adjacent. 

Theorem 2.1.1 The regular divisor graph of 

the ring 𝑍𝑝  is bipartite graph and 

 𝕽𝟃(𝑍𝑝) ≅
(𝑝−3)

2
𝐾2   where 𝐾2  is a 

complete graph of order two. 

Proof: Since the ring  𝑍𝑝  is division ring 

then 𝑍𝑝 is regular, it means for all 𝑎 ∈  𝑍𝑝 

 𝑎 is a regular element. Then the vertex set 

V(𝑍𝑝) =   𝑍𝑝 − {0} , two elements 1 and 

https://doi.org/10.25130/tjps.v28i5.1587
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𝑝 − 1  in 𝑍𝑝  are self-regular and self-

inverse  

1.1.1 = 1  and (𝑝 − 1)2. (𝑝 − 1) = (𝑝 −
1)  and they make a loop in the regular 

divisor graph so we exclude 1 and 𝑝 − 1 in 

the vertex set,  

then |𝑉(𝑍𝑝)| = 𝑝 − 3, and each 𝑎 ∈ 𝑍𝑝, 𝑎 

is adjacent with 𝑎−1 

 (  𝑎𝑖. 𝑎𝑖
−1. 𝑎𝑖 = 𝑎𝑖)  for all 𝑎𝑖 ∈ 𝑍𝑝) by the 

regularity so we have two types of vertices 

such that 𝑉1(𝑍𝑝) = {𝑎1, 𝑎2, … , 𝑎𝑖}   and 

𝑉2(𝑍𝑝) = {𝑎1
−1, 𝑎2

−1, … , 𝑎𝑖
−1} ,  𝑖 =

𝑝−3

2
 , 

and each element in 𝑉1 is adjacent with only 

one element in 𝑉2, since the inverse element 

is unique.  There is no another adjacent 

vertex in the graph. 

And we have exactly 
𝑝−3

2
 vertices in both 

sets. Then the regular divisor graph of the 

ring 𝑍𝑝  is bipartite graph and have exactly  
𝑝−3

2
  vertices in each partite set and 

𝕽𝟃(𝑍𝑝) ≅
(𝑝−3)

2
𝐾2 . 

Example 3: Consider the ring  𝑍11  , 𝑝 =
11    

The non-zero regular elements of 

 𝑍11   are  𝑟∗( 𝑍11) = {1,2,3,4,5,6,7,8,9,10} 

the elements 1 and 10 are self-regular then 

exclude them in the vertex set. And the 

vertex set is 𝑉( 𝑍11) = {2,3,4,5,6,7,8,9} . 

The regular divisor graph of 𝑧11 is shown in 

figure-2.2- 

                                  

 
Figure 2.2: Regular divisor graph  𝕽𝟃(𝑧11) 

 

Note that the vertex set of the regular 

divisor graph𝕽𝟃(𝑧11) contains two types of 

vertices  𝑉1 = {2,3,5,7} 𝑎𝑛𝑑  𝑉2 =
{6,4,9,8} each vertex in 𝑉1  is adjacent with 

vertex in 𝑉2 respectability since 𝑎𝑖. 𝑏𝑖 . 𝑎𝑖 =
𝑎𝑖 for all  𝑎𝑖. 𝑏𝑖 in  𝑉1 and  𝑉2 respectability 

where   𝑏𝑖 = 𝑎𝑖
−1  then we get only 𝐾2 from 

each 𝑎𝑖 and 𝑏𝑖  since we have 4 vertices in 

𝑉1 and 𝑉2  then we get 4 copies of  𝐾2  then 

our graph  𝕽𝟃(𝑧11) ≅ 4𝐾2 and it is a 

bipartite graph. 

2.2    Regular divisor graph of the 

ring 𝑍𝑛 ,   
 𝑛 =
𝑞𝑝 (𝑞, 𝑝 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑞 < 𝑝)  

In this case for 𝑛 = 𝑞. 𝑝 , the regular divisor 

graph has a special shape and different 

properties. To get the graph of the ring 𝑍𝑞.𝑝 

we first gave the following example. 

Example 4: Consider the ring  

𝑍10  , where  𝑞 = 2 , 𝑝 = 5   

𝑍10  is regular ring and we get the graph 

shown in the figure-2.3- 

 
Figure2.3: Regular divisor graph𝕽𝟃(𝑧10) 

 Some elements in the set of regular 

elements  𝑟∗(𝑍10)  , {1,4,5,6,9} they make a 

loop in the graph, then we exclude them 

self-regularity in the vertex set because our 

graph is simple. 

The properties of the graph 𝕽𝟃(𝑍10) 

1) 𝑃 has the maximum degree 𝑑𝑒𝑔(𝑝) =
𝑝 − 1  it is the center of graph 

2) Two vertices (𝑝 − 1) = 4  and  (𝑝 +
1) = 6  are end vertices 

3) Contains one cycle of length 4 

4) The degree sequence is 

{4,3,3,2,2,2,2,1,1} 

5) The ℊ𝒾(𝕽𝟃(𝑍10)) (= 𝜔(𝕽𝟃(𝑍10)) = 3 

6) 𝒟𝒾𝓂(𝕽𝟃(𝑍10)) = 2 

7) 𝑝2 = 𝑝   and (𝑝 + 1)2 = 𝑝 + 1   are 

idempotent elements.  

 2.3 Regular divisor graph of the ring 

𝑍2𝑝   for all prime number 𝑝 > 2 

In general, the regular divisor graph of the 

ring 𝑍2𝑝 , 𝕽𝟃(𝑍2𝑝) has a vertex set 𝑉(𝑍2𝑝) 

of non-zero distinct regular elements, since 

the ring of 𝑍2𝑝 is always regular, then the 

vertex set 𝑉(𝑍2𝑝)   is non-empty set, the 

edge set 𝐸(𝑍2𝑝)  is the set of edges ab, 

where a and b are adjacent with respect to 

regularity. We divide the vertex set in to 

https://doi.org/10.25130/tjps.v28i5.1587
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two partite sets with respect to the 

adjacency of the vertices as a regular 

element in the regular ring 𝑍2𝑝 . 

𝑉(𝑍2𝑝) = 𝑉1(𝑍2𝑝) ⋃  𝑉2(𝑍2𝑝) , 

where   𝑉1  and   𝑉2  are two partite sets 

of 𝑉(𝑍2𝑝)   such that   

𝑉1(𝑍2𝑝) = {1,3,5, … , 𝑝 − 2, 𝑝, 𝑝 +

2, … ,2𝑝 − 1} = 𝑜𝑑𝑑  elements, contains all 

odd regular elements where they are unit 

elements except p (where 𝑝 is idempotent 

element in 𝑍2𝑝). 

𝑉2(𝑍2𝑝) = {2,4,6, … ,2(𝑝 − 1)} , contains 

even regular elements. 

 The first partite set of vertices 𝑉1  has 

exactly p vertices and the second partite set 

𝑉2   has exactly (𝑝 − 1)  vertices. Two 

vertices (𝑝 − 1) and   (𝑝 + 1)  are end 

vertices where they are adjacent with two 

regular elements 2𝑝 − 1 and 1 

respectability. When this last two vertices 

are adjacent with p. 

Proposition 2.3.1: The idempotent 

element 𝑝  in the ring 𝑍2𝑝  is center of the 

regular divisor graph 𝕽𝟃(𝑍2𝑝) . 

Proof: Since 𝑝 is idempotent element in the 

ring, then 𝑝2 = 𝑝. We have to prove that 𝑝 

has the maximum degree in the graph, p is 

regular element and its adjacent as a vertex 

with all vertices in the first partite set 𝑉1 

(odd or unit elements) of the vertex set 

𝑉(𝑍2𝑝)of the graph as follow: 

 for any 𝑎𝑖 ∈ 𝑉1 , 𝑝. 𝑎𝑖. 𝑝 = 𝑝2. 𝑎𝑖 =
𝑝. 𝑎𝑖 = 𝑝, 𝑎𝑖 ≠ 𝑝 

since 𝑎𝑖 is odd, then 𝑎𝑖 = 2𝑚 + 1  for 𝑚 =
0,1,2, …. 
Then 𝑝2. 𝑎𝑖 = 𝑝. 𝑎𝑖 = 𝑝(2𝑚 + 1) =
2𝑚𝑝 + 𝑝 = 𝑝 

 since  𝑉1(𝑍2𝑝)  contains exactly 𝑝  

vertices, we exclude p, then the 𝑑𝑒𝑔(𝑝) =
𝑝 − 1. And p have no other adjacency. 

Now we must calculate the degree of all 

other vertices in the graph 𝕽𝟃(𝑍2𝑝)  as 

follow: 

This ring 𝑍2𝑝  has another idempotent 

element (𝑝 + 1) and it is adjacent only with 

the vertex 1 in the regular divisor graph 

𝕽𝟃(𝑍2𝑝), then deg(p+1)=1. 

The vertices ai in  𝑉1 and  𝑏𝑖 𝑖𝑛 𝑉2  are 

adjacent together as follows. 

 In 𝑉1  and 𝑉2 , the unit elements are 

adjacent together each 𝑎𝑖   with   𝑎𝑖
−1  and 

𝑏𝑖  with 𝑏𝑖
−1

, but two elements   

1  and  2𝑝 − 1 in 𝑉1  are their own inverse 

and they are adjacent with p+1 and p-1 in 

V2 respectively rather than the adjacency 

with vertex p as follow: 

(𝑝 + 1). 1. (𝑝 + 1) = (𝑝 + 1)2. 1  = (𝑝 +
1)2 = 𝑝 + 1   (idempotent) 

 and    (𝑝 − 1). (2𝑝 − 1). (𝑝 − 1)     = (𝑝 −
1)2. (2𝑝 − 1) 

= (𝑝2 − 2𝑝 + 1). (2𝑝 − 1)  = (2𝑝3 −
4𝑝2 + 2𝑝 − 𝑝2 + 2𝑝 − 1)  

= 2𝑝 − 4𝑝 + 2𝑝 − 𝑝 + 2𝑝 −
1       𝑠𝑖𝑛𝑐𝑒 𝑝 𝑖𝑠 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡  𝑝2 = 𝑝  

= 4𝑝 − 4𝑝 − 𝑝 + 2𝑝 − 1   = (p-1). Then 

𝑑𝑒𝑔(1) =  𝑑𝑒𝑔(2𝑝 − 1)  = 2. 

In another hand two vertices p-1 and p+1 in 

𝑉2 are two end vertices, they are of degree 

one. 

We proved that the vertex p has a maximum 

degree in the regular divisor graph, then 𝑝 

is center of the graph 𝕽𝟃(𝑍2𝑝).      

Remark: To describe the regular divisor 

graph  𝕽𝟃(𝑍𝑛)  we need to define a new 

operation in graph theory we called it half 

join and denoted by  ⨭𝑟  means the join 

operation between two graphs when we 

take half number of vertices in the second 

graph. 

Definition 2.3.3 The half-join operation 

between graph 𝐺 ( 𝑝1, 𝑞1 ) with r-regular 

graph 𝐻 (𝑝2, 𝑞2 ) is defined by joining the 

vertices of the graph 𝐺 ( 𝑝1, 𝑞1 ) with r 

numbers of vertices of r-regular graph 

𝐻(𝑝2, 𝑞2) is denoted by 𝐺 ⨭𝑟 𝐻  such that 

𝑉(𝐺 ⨭𝑟 𝐻) = 𝑉(𝐺) + 𝑉(𝐻) = 𝑝1 + 𝑝2   

𝐸(𝐺 ⨭𝑟 𝐻) = 𝐸(𝐺) + 𝐸(𝐻) + {𝑢𝑣𝑖 ∶ 𝑢 ∈
𝐺 𝑎𝑛𝑑 𝑣𝑖  ∈ 𝐻 , 𝑖 = 1,2, … , 𝑟} = 𝑞1 + 𝑞2 +
𝑝1𝑝2

𝑟
    

Theorem2.3.4: The regular divisor graph 

of the ring 𝑍2𝑝 (for all prime number 𝑝 ≥ 3 

) is  

𝕽𝟃(𝑍2𝑝) ≅ 𝑘1(+2 (2𝑝2 ∪ ( 
𝑝−3

2
) 𝑐4)  

Proof: The vertex set of regular divisor 

graph 𝕽𝟃(𝑍2𝑝) except center p is partition 
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in to two partite sets relation with regularity 

property. 

𝑉1 − {𝑝}  contains all odd elements (unit 

elements), 𝑉1 = {1,3,5, … . . ,2𝑝 − 1} − {𝑝} 

𝑉2 contains all even elements, 𝑉2 =
{2,4,6, … ,2(𝑝 − 1)},  each sets contain 

exactly p-1vertices. 

the elements in  𝑉1 − {𝑝}  are unit elements, 

then they are adjacent each together 

𝑎𝑖 𝑤𝑖𝑡ℎ 𝑎𝑖
−1 , ∀ 𝑎𝑖 ∈ 𝑉1 − {𝑝}. In the other 

hand 𝑏𝑖 ∈ 𝑉2 is adjacent with 𝑎𝑖 ∈ 𝑉1 − {𝑝} 

and is adjacent with 𝑏𝑖
~ ∈ 𝑉2  since 𝑏𝑖 =

𝑏𝑖. 𝑎𝑖. 𝑏𝑖 and 𝑏𝑖 = 𝑏𝑖. 𝑏𝑖
~. 𝑏𝑖 . 

𝑏𝑖
~ ∈ 𝑉2  is adjacent with 𝑎𝑖

−1 ∈ 𝑉1 − {𝑝}  

and is adjacent with  𝑏𝑖 ∈ 𝑉2   since 𝑏𝑖
~ =

𝑏𝑖
~. 𝑎𝑖

−1. 𝑏𝑖
~   and  𝑏𝑖

~ = 𝑏𝑖
~. 𝑏𝑖. 𝑏𝑖

~ , for all 

𝑖 = 1,2,3, … , 𝑝 − 3  , these relations make 

the cycle 𝐶4 (exactly (
𝑝−3

2
)𝐶4), but the two 

elements 1 and 2𝑝 − 1  in 𝑉1  are adjacent 

with two elements 𝑝 + 1  and 𝑝 − 1  in 𝑉2 

respectability  to makes the path 𝑃2 since  

(𝑝 + 1)2. 1 = (𝑝 + 1)2  = 𝑝2 + 2𝑝 + 1  =
𝑝 + 1  𝑠𝑖𝑛𝑐𝑒 𝑝 𝑖𝑠 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 (𝑝2 = 𝑝)  

And (𝑝 − 1)2. (2𝑝 − 1) = (𝑝 − 1) .  

Then now we have the part (2𝑝2 ∪

( 
𝑝−3

2
) 𝑐4). 

Now, the center is 𝐾1 and since 𝑝 ∈ 𝑉1  (the 

center of graph) (proposition 5.1) and have 

maximum degree since it is adjacent with 

all other vertices in  𝑉1  ( 𝑝 = 𝑝. 𝑎. 𝑝  ,
∀ 𝑎 ∈   𝑉1   ) then p is adjacent with one 

vertex of each path part P2  ( we have 2p2) 

we get p (+2  2𝑝2 , in the other hand p 

adjacent with 2 vertices of each cycle C4 

(we have exactly 
𝑝−3

2
  𝑐4 ), so we get  

𝑘1(+2(2𝑝2 ∪ ( 
𝑝−3

2
) 𝑐4)  by the new 

operation, implies that  

𝕽𝟃(𝑍2𝑝) ≅ 𝑘1(+2(2𝑝2 ∪ ( 
𝑝−3

2
) 𝑐4)      As  

shown in figure-2.4-  

Figure 2.4: general form of the regular 

divisor graph R_∂ (Z_2p) 

Remark: In figure-2.4-  𝑏1 = 𝑎1
−1 + 𝑝  ,  

𝑏1
~ = 𝑎1 + 𝑝 and 𝑏𝑖 = 𝑎𝑖

−1 + 𝑝  ,  𝑏𝑖
~ =

𝑎𝑖 + 𝑝 

Corollary 2.3.5:   The regular divisor 

graph 𝕽𝟃(𝑍2𝑝) has two end vertices for all 

p in the ring (𝑍2𝑝) . 

Proof: The two vertices are  𝑝 −
1  and  𝑝 + 1 are in the second partite set 

𝑉2 of vertex set  𝑉(𝑍2𝑝) , 

Since 𝑝 + 1 is one of the idempotent 

elements in the ring, then (𝑝 + 1)2 = 𝑝 +
1   
up to the regularity of the  (𝑝 + 1) its 

adjacent with only one vertex 1, and the 

other 𝑝 − 1 is regular with respect to 

(2𝑝 − 1) also we exclude the self-

regularity by the same reason. 

 (𝑝 − 1)2. (2𝑝 − 1) = 2𝑝3 − 3𝑝2 + 4𝑝 −

1 = 𝑝 − 1 , 𝑠𝑖𝑛𝑐𝑒 (𝑝 is idempotent) 

There exists an edge 𝑒2 joins these two 

vertices and no other edges, 𝑑𝑒𝑔(𝑝 − 1) =

𝑑𝑒𝑔(𝑝 + 1) = 1 

 Proposition 2.3.6: The regular divisor 

graph 𝕽𝟃(𝑍2𝑝) contains (
𝑝−3

2
) cycles of 

order 4. 

Proof: In the fact that we have always two 

end vertices 𝑝 + 1   and   𝑝 − 1 adjacent 

with 

1  and  2𝑝 − 1  respectability and they are 

the only two vertices of degree one. 

All the other vertices in  𝑉1 −
{𝑝} and 𝑉2 are adjacent together as follow 

to make the cycle 𝑐4 

(𝑎𝑖, 𝑎𝑖
−1) , (𝑏𝑖, 𝑏𝑖

~), (𝑎𝑖, 𝑏𝑖),and (𝑎𝑖
−1, 𝑏𝑖

~)  

Since we have 𝑝 − 1 vertices in each 

partite set we exclude two vertices in each 

partite sets then we have (
𝑝−3

2
) cycles of 

length 4. 

https://doi.org/10.25130/tjps.v28i5.1587


  

 

  
Tikrit Journal of Pure Science (2023) 28 (5):158-175 
Doi: https://doi.org/10.25130/tjps.v28i5.1587   

 

164 

Corollary 2.3.7: The regular divisor graph 

𝕽𝟃(𝑍2𝑝) for  p>2, is planner graph. 

Proof: By theorem 2.3.4 clearly has no 

crossing number in the regular divisor 

graph 𝕽𝟃(𝑍2𝑝) then it is planner graph. 

Proposition 2.3.8: The clique number 

𝜔(𝐺)  of the regular divisor graph 

𝕽𝟃(𝑍2𝑝) is equal 3. 

Proof: The regular divisor graph of the 

ring 𝑍2𝑝 is planner graph and the smallest 

cycle in 𝕽𝟃(𝑍2𝑝) is 𝐶3 obtained from the 

adjacency between the vertices 𝑝, 𝑎𝑖 , 𝑎𝑖
−1  

then complete subgraph is 𝑘3 . And the 

order of 𝑘3 is equal to 3. 

 Corollary 2.3.9: The clique number equal 

to girth in the graph 𝕽𝟃(𝑍2𝑝). 

𝜔 (𝕽𝟃(𝑍2𝑝)) = ℊ𝒾 (𝕽𝟃(𝑍2𝑝)) = 3  

Proof: It is clear that the shortest cycle in 

the graph 𝕽𝟃(𝑍2𝑝) is 𝐶3 and length of this 

cycle is three then girth of the graph is 

equal to 3 and clique number=3. 

 Proposition 2.3.10: The dimeter of 

regular divisor graph 𝕽𝟃(𝑍2𝑝) , 

𝒟𝒾𝓂 (𝕽𝟃(𝑍2𝑝)) = 4  .     

 Proof: In the general form of the graph 

𝕽𝟃(𝑍2𝑝) that it is shown in the figure-2.4- 

it is clear that the distance between p with 

𝑎𝑖 for all 𝑎𝑖 ∈ 𝑉1 − {𝑝} is equal to 1, the 

distance between p with 𝑏𝑗 for all 𝑏𝑗 ∈ 𝑉2 

is equal to 2, the distance between 𝑎𝑖 for 

all 𝑎𝑖 ∈ 𝑉1 − {𝑝}  is equal to 1 or 2, the 

distance between 𝑎𝑖 with 𝑏𝑗 is equal to 1 or 

2 or 3  for all 𝑎𝑖 ∈ 𝑉1 − {𝑝}  and  𝑏𝑗 ∈ 𝑉2 , 

the distance between 𝑏𝑗 is equal to 1 or 4 

for all 𝑏𝑗 ∈ 𝑉2 , So, the maximum distance 

in the graph 𝕽𝟃(𝑍2𝑝) is equal to 4 , Then  

𝒟𝒾𝓂 (𝕽𝟃(𝑍2𝑝))  = 4 

Theorem 2.3.11: Chromatic number 

𝒳 (𝕽𝟃(𝑍2𝑝)) = 3  . 

Proof:  The vertex 𝑝 is adjacent with all 

vertices in 𝑉1 − {𝑝} and for all 𝑎𝑖 ∈ 𝑉1 −

{𝑝} there exists 𝑎𝑖
−1 ∈ 𝑉1 − {𝑝} such that 

𝑎𝑖 is adjacent with 𝑎𝑖
−1, then they must 

have different color, the vertices in 𝑉2 they 

are adjacent together and adjacent with 

some vertices in 𝑉1 by respect to the 

regularity 𝑝 + 1, 𝑝 − 1 are adjacent with 

1,2𝑝 − 1 respectability, then if p and 𝑝 +
1, 𝑝 − 1  are red all 𝑎𝑖, 𝑏𝑗

~ with 1 and 2𝑝 −

1 take another color say blue and 𝑎𝑖
−1 with 

𝑏𝑗 take another color, so we use three 

different colors to coloring all vertices in 

the graph 𝕽𝟃(𝑍2𝑝)  As shown in figure-

2.5-. Then  

𝒳 (𝕽𝟃(𝑍2𝑝)) = 3 .  

 

 

 

 

 

Figure 2.5: chromatic number for the 

general form in the regular divisor graph 

𝕽𝟃(𝑍2𝑝). 

Definition 2.3.12: Butterfly graph 𝐵1,𝑛𝐶3
 

is a graph obtained from 2 path 𝑃2  and n 

cycle 𝐶3 identifying in one vertex r called a 

root as shown in figure-2.6-. 

 
Figure 2.6: Butterfly graph 𝐵1,𝑛𝐶3
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Theorem 2.3.13: The regular divisor graph 

𝕽𝟃(𝑍2𝑝)  is Butterfly graph 𝐵
1,(

𝑝−3

2
)𝐶3

 of 

order p and size 
3𝑝−5

2
  by removing all even 

vertices from the vertex set 𝑉(𝑍2𝑝) . 

Proof:  Since the vertex set of regular 

divisor graph 𝕽𝟃(𝑍2𝑝) is partition in to two 

partite sets relation with regularity property. 

𝑉1 = {1,3,5, … . . ,2𝑝 − 1} 

𝑉2 = {2,4,6, … ,2(𝑝 − 1)}.  𝑉1 − {𝑝}𝑎𝑛𝑑 𝑉2 

has exactly 𝑝 − 1 vertices. If we remove the 

even vertices  and all the incident edges 

from the vertex set  𝑉(𝑍2𝑝) so only the first 

part of vertex set remains and since 𝑝 ∈
𝑉1  is the center of graph (proposition 2.3.1) 

and have maximum degree since it is 

adjacent with all other vertices in  𝑉1  (𝑝 =
𝑝. 𝑎𝑖. 𝑝 , ∀ 𝑎𝑖 ∈   𝑉1   ) and the elements in  

𝑉1 − {𝑝}  are unit elements, then they are 

adjacent each together 𝑎𝑖 𝑤𝑖𝑡ℎ 𝑎𝑖
−1 , ∀ 𝑎𝑖 ∈ 

𝑉1 − {𝑝} then p with 𝑎𝑖 and 𝑎𝑖
−1 makes the 

cycle 𝐶3  but the two elements 1 and 2p-1 in 

𝑉1 are self − regular then they do not 

adjacent with it is inverse and they are 

makes two path 𝑃2  . Since |𝑉1 − {𝑝}| =

𝑝 − 1 then 𝑖 = 1,2,3, … ,
𝑝−3

2
 

Then the graph we got from 𝑉1 is Butterfly 

graph 𝐵
1,(

𝑝−3

2
)𝐶3

 . As shown in the figure-

2.7- 

 
Figure 2.7 

 2.4 Regular divisor graph of the ring 

𝑍3𝑝   for all prime number 𝑝 > 3 

The Regular divisor graph of the ring 

𝑍3𝑝, 𝑝 is prime number and 𝑝 > 3, different 

graph and has different properties. 

In this section we will study the properties 

of the regular divisor graph  𝕽𝟃(𝑍3𝑝). 

The ring  𝑍3𝑝 is regular ring for all prime 

number 𝑝 > 3 and the regular divisor graph 

of this type of ring has different shape or 

special case since the vertex set  𝑉(𝑍3𝑝) of 

this ring is different from the vertex set of 

the ring  𝑍2𝑝  certainly we get a different 

graph with special cases. First, we give an 

example to show the regular divisor graph 

of  𝑍3𝑝 . 

Example 6: Consider the ring  𝑍15 , 𝑞 =
3  𝑎𝑛𝑑  𝑝 = 5 

The vertex set 𝑉(𝑍15) = {1,2,3, … ,14} ) 

the regular divisor graph 𝕽𝟃(𝑅)  of the ring  

𝑅 = 𝑍15 is shown in figure -2.8- 

 
Figure 2.8: Regular divisor graph  𝕽𝟃(𝑧15) 

 

The properties of the regular divisor graph 

𝕽𝟃(𝑧15) 

1) Center 𝕽𝟃(𝑧15) = {𝑝, 2𝑝}   since 

𝑑𝑒𝑔(𝑝) = 𝑑𝑒𝑔(2𝑝) = 𝑝 − 1  
2) 𝑃 + 1,2𝑝 = (6,10)  are idempotent 

elements  

3) The vertices 4,5,6,9,10,11 = {𝑝 −
1, 𝑝, 𝑝 + 1,2𝑝 − 1,2𝑝, 2𝑝 + 1}  are two 

sides regular. 

4) ℊ𝒾( 𝕽𝟃(𝑧15) )= 𝜔(𝕽𝟃(𝑧15) ) = 3 

5) The regular divisor graph 𝕽𝟃(𝑧15) is 

planner connected graph 

6) 𝒟𝒾𝓂 (𝕽𝟃(𝑧15) ) = 4 

7) This graph contains one circuit (𝑐4⦁⦁𝑐4) 

of order 6 

8) |𝕽𝟃(𝑧15) | = 14   ,   𝐸(𝕽𝟃(𝑧15)) = 19 

To explain how we study the cases of the 

regular divisor graph of the ring 𝑍3𝑝  , we 

have to give another example to show the 

different graphs with respect to the 

adjacency between vertices. 
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Example 7 The regular divisor graph of the 

ring 𝑍3.7 = 𝑍21  

𝑉(𝑍21) = {1,2,3,4, … ,20}  

 𝑎𝑛𝑑  𝐸(𝕽𝟃(𝑧15)) = {(𝑎, 𝑏) , 𝑎 =

𝑎. 𝑏. 𝑎  𝑜𝑟  𝑏 = 𝑏. 𝑎. 𝑏   ∀  𝑎 ≠ 𝑏 ≠ 0 ∈
𝑍21}  

The regular divisor graph of the ring  𝑍21 is 

shown in figure -2.9- 

 
Figure 2.9: Regular divisor graph  𝕽𝟃(𝑧21)  

 

The properties of the regular divisor graph 

𝕽𝟃(𝑧21) 

1) Center = { 𝑝, 2𝑝} = {7,14}   sine 

𝑑𝑒𝑔(𝑝) = 𝑑𝑒𝑔(2𝑝) = 6 

2) 𝑃  𝑎𝑛𝑑  2𝑝 + 1  are idempotent 

3) Self-regular elements  

{6,7,8,13,14,15} = {𝑝 − 1, 𝑝, 𝑝 +
1,2𝑝 − 1,2𝑝, 2𝑝 + 1} are loops 

4) ℊ𝒾(𝕽𝟃(𝑧21))= 𝜔(𝕽𝟃(𝑧21))=3 

5) 𝒟𝒾𝓂 (𝕽𝟃(𝑧21)) =4 

6) The regular divisor graph 𝕽𝟃(𝑧21)  is 

connected planner graph 

7) This graph contains two circuit (𝑐4⦁⦁𝑐4) 

of order 6 

When we compare these two rings in the 

examples 6 and 7 and study the properties 

of their regular divisor graphs in figure -

2.11- and figure -2.12-   we get the 

following: 

1) In each case the graph has two centers 

of greatest degree they are 𝑝 𝑎𝑛𝑑 2𝑝  

2) The graph in each case connected 

planner, grith and clique =3 , with 

diameter =4. 

3) Order of graph |𝕽𝟃(𝑧3𝑝) | = 3𝑝 −

1   𝑎𝑛𝑑  𝐸(𝕽𝟃(𝑧15)) =
(11𝑝−17)

2
  

4) The idempotent elements are different 

in each case, when   

𝑒 = {𝑝 + 1,2𝑝}  in 𝑍15   for 𝑞 =
3  𝑎𝑛𝑑  𝑝 = 5 . 

  and  𝑒~ = {𝑝, 2𝑝 + 1}   in   𝑍21  for   𝑞 =
3  𝑎𝑛𝑑  𝑝 = 7  

 in 𝕽𝟃(𝑧15)  the first idempotent element 

𝑝 + 1 = 6   is adjacent with 1 𝑎𝑛𝑑  11 =
2𝑝 + 1  
While the second idempotent 2𝑝 = 10  is 

adjacent with   1  𝑎𝑛𝑑  𝑝 − 1 = 4             

But in the ring  𝑍21  , the idempotent 

element 2p+1=15 is adjacent with vertices 

1 and p+1=8 ,  

And the second p=7 is adjacent with 1 and 

2p-1=13. 

For this reason and depending on the 

adjacency between the vertices as regular 

element in the ring 𝑍3𝑝 in general we have 

two cases. 

Now to study the regular divisor graph of 

the ring 𝑍3𝑝, we should make this study in 

to two different cases according to the 

adjacency of idempotent elements as a 

vertex in this graph.  

For these two cases we need to give the 

following figures: 

figure-2.10- and figure-2.11-, shows two 

general cases of regular divisor graph of the 

ring 𝑧3𝑝 

 
Figure 2.10: General form of Regular 

divisor graph  𝕽𝟃(𝑧3𝑝) 

 
Figure 2.11: General form of Regular 

divisor graph  𝕽𝟃(𝑧3𝑝) 

 

As shown in the figure 2.10 and figure 2.11  

In general, the vertex set V of the regular 

divisor graph of the ring 𝑍3𝑝 is: 

V(𝕽𝟃(𝑧3𝑝))= {1, 2, 3, … … . ,3𝑝 − 1} 
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To justify this, we partition this set of 

regular divisor graph 𝕽𝟃(𝑧3𝑝)  into three 

partite sets as follow: 

𝑉1(𝑍3𝑝) = {1, 𝑝, 2𝑝, 𝑝 − 1,2𝑝 − 1,3𝑝 −

1, 𝑝 + 1,2𝑝 + 1}  these vertices make 

border of the graph, then they are vertices 

of circumference of graph, some elements 

in 𝑉1  are self-unit and others are non-unit. 

Two vertices p and 2p in 𝑉1 are centers and 

have maximum degree (𝑝 − 1)  and the 

other vertices of degree 2. 

The second partite set  𝑉2(𝑍3𝑝) = {𝑎𝑖: 𝑎𝑖 is 

unit element for all i=1, 2,…. 2(P-3)} and 

they are exactly (2𝑝 − 6)  vertices in the 

regular divisor graph. 

𝑉3(𝑍3𝑝) =  { 𝑏𝑗 , 𝑗 = 1, 2, … (𝑝 − 3), all 

other non-unit elements such that they are 

adjacent together by regularity} ={ 3𝑘, 𝑘 =
1, 2, … (𝑝 − 1)} 

Then  𝑉(𝑍3𝑝) = 𝑉1(𝑍3𝑝) ∪  𝑉2(𝑍3𝑝) ∪

𝑉3(𝑍3𝑝)  

|𝑉(𝑍3𝑝)| = 3𝑝 − 1  

|𝑉1(𝑍3𝑝)| = 8  

|𝑉2(𝑍3𝑝)| = 2(𝑝 − 3)  

|𝑉3(𝑍3𝑝)| = 𝑝 − 3  

 

Now we discuss the two cases for regular 

divisor graph 𝕽𝟃(𝑧𝑞𝑝)  for all prime 

number 𝑞 = 3  and  𝑝 > 3 as follow: 

Case1:  For q=3 and p=7,13,19, … 

In this case 𝑝 as a center is adjacent with the 

vertices {1,4,7, … ,3𝑝 − 2} − 𝑝 ⊂ 𝑉2  

except {1,2𝑝 − 1} ⊂ 𝑉1 and 2𝑝 is adjacent 

with the vertices  {2,5,8, … ,3𝑝 − 1} −
2𝑝 ⊂ 𝑉2  except {𝑝 + 1,3𝑝 − 1} ⊂ 𝑉1  and 

all elements in 𝑉2 are unit they are adjacent 

each element with its inverse. In this case 𝑝 

and 2𝑝 + 1  are idempotents [𝑝2 =
𝑝  𝑎𝑛𝑑  (2𝑝 + 1)2 = 2𝑝 + 1] but 2𝑝 is not 

idempotent and (2𝑝)2 = 𝑝 , but the vertices 

1,2𝑝 − 1,3𝑝 − 1, 𝑝 + 1  in 𝑉1  are self-

inverse and the vertices 𝑝 − 1,2𝑝 + 1 in 𝑉1 

are non-unit elements. 

Proposition 2.4.1: In case1: 

𝑑𝑒𝑔(2𝑝 + 1) =  𝑑𝑒𝑔(𝑝 − 1)  = 2  such 

that: 

i) The vertex   2𝑝 + 1 ∈  𝑉1  is adjacent 

with the vertices 1 𝑎𝑛𝑑 𝑝 + 1 𝑖𝑛 𝑉1  

ii) The vertex   𝑝 − 1 ∈ 𝑉1 is adjacent with 

the vertices 2𝑝 − 1  𝑎𝑛𝑑  3𝑝 − 1  𝑖𝑛 𝑉1  

Proof:  

i)  According to the regularity 

(2𝑝 + 1)2. 1 = (2𝑝 + 1). 1    =2𝑝 + 1    

And   (2𝑝 + 1)2. (𝑝 + 1) =  = (2𝑝 +
1). (𝑝 + 1)    
                                          = 2𝑝2 + 2𝑝 +
𝑝 + 1 (p is idempotent)      

                                          = 3𝑝 + 2𝑝 + 1 

=2𝑝 + 1  

 Then the vertex (2𝑝 + 1) is adjacent with 

two vertices 1 and (p+1) 

ii)In the other hand (p-1) is regular with 

respect to two elements (2p-1) and (3p-1), 

then 

(𝑝 − 1)2. (2𝑝 − 1) = (𝑝2 − 2𝑝 +
1). (2𝑝 − 1)   

 =(𝑝 − 2𝑝 + 1). (2𝑝 − 1)  since in this case 

p is idempotent (𝑝2 = 𝑝) 

 = (1 − 𝑝). (2𝑝 − 1)   = 2𝑝 − 1 − 2𝑝2 + 𝑝 

=𝑝 − 1 

 And   (𝑝 − 1)2. (3𝑝 − 1)  = (𝑝2 − 2𝑝 +
1). (3𝑝 − 1)  (p is idempotent 𝑝2 = 𝑝)  

 =(1 − 𝑝). (3𝑝 − 1) =3𝑝 − 1 − 3𝑝2 + 𝑝   

 =𝑝 − 1 

Then we get the adjacency of this vertex 

with two vertices (2p-1) and (3p-1) to get 

the result. 

Case2: For  𝑞 = 3 𝑎𝑛𝑑 𝑝 = 5,11,17, …. n 

this case 2𝑝  and 𝑝 + 1  are idempotents 

[(2𝑝)2 = 2𝑝  𝑎𝑛𝑑  (𝑝 + 1)2 = 𝑝 + 1]  
But 𝑝 is not idempotent and  𝑝2 = 2𝑝  . in 

this case 𝑝  is adjacent with the vertices 
{2,5,8, … ,3𝑝 − 1} − 𝑝 ⊂ 𝑉2  except {2𝑝 +
1,3𝑝 − 1} ⊂ 𝑉1and 2𝑝 is adjacent with the 

vertices 
{1,4,7, … ,3𝑝 − 2} − 2𝑝 ⊂ 𝑉2   except 

{1, 𝑝 − 1} ⊂ 𝑉1 and all elements in 𝑉2  are 

adjacent with its inverse. 

In this case the vertices 1, 𝑝 − 1,3𝑝 −
1,2𝑝 + 1  in 𝑉1  are self-inverse then there 

are no edges joins them. 

Proposition 2.4.2: In case2 

i)The vertex   𝑝 + 1 ∈  𝑉1 is adjacent with 

the vertices 1 𝑎𝑛𝑑 2𝑝 + 1 𝑖𝑛 𝑉1 

ii)The vertex   2𝑝 − 1 ∈ 𝑉1 is adjacent with 

the vertices 𝑝 − 1  𝑎𝑛𝑑  3𝑝 − 1  𝑖𝑛 𝑉1 ,  

Then 𝑑𝑒𝑔(𝑝 + 1)  =  𝑑𝑒𝑔( 2𝑝 − 1)  = 2 
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Proof:  

i) (𝑝 + 1)2. 1 = (𝑝 + 1)   since in this 

case 𝑝 + 1 is idempotent 

And (𝑝 + 1)2. (2𝑝 + 1) = (𝑝 + 1). (2𝑝 +
1)    (also 𝑝 + 1 is idempotent) 

= 2𝑝2 + 𝑝 + 2𝑝 + 1  = 2(2𝑝) + 𝑝 + 2𝑝 +
1        𝑠𝑖𝑛𝑐𝑒  𝑝2 = 2𝑝  

= 4𝑝 + 𝑝 + 2𝑝 + 1  = 6𝑝 + 𝑝 + 1  = 𝑝 +
1  

  ii)    (2𝑝 − 1)2. (𝑝 − 1) = ((2𝑝)2 − 4𝑝 +
1). (𝑝 − 1)  

= (2𝑝 − 4𝑝 + 1). (𝑝 −
1)   𝑠𝑖𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 (2𝑝)2 = 2𝑝 

= 2𝑝2 − 4𝑝2 + 𝑝 − 2𝑝 + 4𝑝 − 1  

= 2(2𝑝) − 2𝑝 + 𝑝 − 2𝑝 + 4𝑝 − 1  since  

4𝑝2 = (2𝑝)2 = 2𝑝  𝑎𝑛𝑑 𝑝2 = 2𝑝 

= 2𝑝 − 1  

 And    (2𝑝 − 1)2. (3𝑝 − 1) =  ((2𝑝)2 −
4𝑝 + 1). (3𝑝 − 1)  

= (2𝑝 − 4𝑝 + 1). (3𝑝 −
1)   𝑠𝑖𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 (2𝑝)2 = 2𝑝  

= 6𝑝2 − 12𝑝2 + 3𝑝 − 2𝑝 + 4𝑝 − 1  =
6(2𝑝) − 12(2𝑝) + 3𝑝 − 2𝑝 + 4𝑝 − 1    ( 

𝑝2 = 2𝑝)  

=12𝑝 − 24𝑝 + 5𝑝 − 1=5𝑝 − 1 = 2𝑝 − 1  

It is worth mentioning in both cases for all 

𝑏 ∈ 𝑉3   there is two elements in 𝑉2   such 

that b is adjacent with them. 

Proposition 2.4.3: The regular divisor 

graph 𝕽𝟃(𝑧3𝑝)   contains 
(𝑝−3)

2
   subgraphs 

of the for circuit  (𝐶4⦁⦁𝐶4).(𝐶4⦁⦁𝐶4 denoted 

the identifying an edge between two cycles) 

Proof: As it appears in figures 2.10 and 

2.11 the vertices in 𝑉2 be divided into two 

parts the vertices of one of the parts are 

adjacent with the vertex p and adjacent with 

a vertex in 𝑉3 such that 𝑎𝑖 with 𝑏𝑗  and 𝑎𝑖
−1 

with 𝑏𝑗
~ the vertices of the other part in 𝑉2 

are adjacent with the vertex 2p and adjacent 

with a vertex in 𝑉3 such that 𝑎𝑘 with 𝑏𝑗 and 

𝑎𝑘
−1 with 𝑏𝑗

~, in both parts they are adjacent 

together 𝑎𝑖 with  𝑎𝑖
−1 , in the other hand the 

vertices in 𝑉3they are adjacent together by 

regularity 𝑏𝑗  with 𝑏𝑗
~then one of the part in 

𝑉2 makes a cycles 𝐶4 as follow 

(𝑎𝑖, 𝑎𝑖
−1), (𝑎𝑖, 𝑏𝑗), (𝑎𝑖

−1, 𝑏𝑗
~), (𝑏𝑗 , 𝑏𝑗

~)   for 

some 𝑎𝑖, 𝑎𝑖
−1 ∈ 𝑉2 and 𝑏𝑗 , 𝑏𝑗

~ ∈ 𝑉3 

And another part of 𝑉2 with the vertices in 

𝑉3 makes the cycles 𝐶4 as follow  

(𝑎𝑘, 𝑎𝑘
−1), (𝑎𝑘, 𝑏𝑗), (𝑎𝑘

−1, 𝑏𝑗
~), (𝑏𝑗, 𝑏𝑗

~)  for 

some 𝑎𝑘, 𝑎𝑘
−1 ∈ 𝑉2 and 𝑏𝑗, 𝑏𝑗

~ ∈ 𝑉3 

The edge (𝑏𝑗 , 𝑏𝑗
~)  is identifying between 

both cycles then we get the circuit   𝐶4⦁⦁𝐶4 

since |𝑉2(𝑧3𝑝)| = 2𝑝 − 6    and  

|𝑉3(𝑧3𝑝)| = 𝑝 − 3    so we have exactly   
(𝑝−3)

2
   circuit  𝐶4⦁⦁𝐶4 . 

Corollary 2.4.4 The regular divisor graph 

of the commutative ring  𝑍3𝑝 is connected 

planner graph. 

Proof: It is clear in figure-2.10- and figure-

2.11-has no crossing number in the graph 

𝕽𝟃(𝑧3𝑝)  and all vertices are adjacent, then 

this graph is connected and planner graph. 

Definition 2.4.5: Let G and H be two 

graphs the inserting edge between two 

graphs is denoted by 𝐺 ∶ 𝐻  if 𝑒 = 𝑢𝑣 is an 

edge joins a vertex 𝑣 ∈ 𝐺 with a vertex 𝑢 ∈
𝐻 such that  

𝑉(𝐺: 𝐻)= 𝑉(𝐺) + 𝑉(𝐻) 

𝐸(𝐺 ∶ 𝐻)=𝐸(𝐺) + 𝐸(𝐻) + 1, and ⋮ denoted 

the inserting of two edges between them 

such that 

 𝑉(𝐺 ⋮ 𝐻 )= 𝑉(𝐺) + 𝑉(𝐻) , 𝐸(𝐺 ⋮
𝐻)=𝐸(𝐺) + 𝐸(𝐻) + 2 

Theorem 2.4.6: The regular devisor graph 

of the ring Z3p is a new graph of the form 

𝕽𝟃(𝑍3𝑝) ≅  p ⫶ 𝐻𝑖 ⫶ 2p, where p and 2p are 

belong to the boarder part C8, and 𝐻𝑖, i=1, 

2, ..., p- 3/2 are isomorphic subgraphs of the 

form (𝐶4⦁⦁𝐶4) .( ⫶ is denoted an inserting of 

two edges from p or 2p to Hi). 

Proof: (Case 1) 

It is clear that in case one the vertex p is 

adjacent with 1,2𝑝 − 1 and the vertex 2p is 

adjacent with 𝑝 + 1, 𝑝 − 1,  by proposition 

2.4.1 the vertex 2𝑝 + 1 is adjacent with the 

vertices 1, 𝑝 + 1  and the vertex 𝑝 − 1  is 

adjacent with the vertices 2𝑝 − 1,3𝑝 − 1 

then the vertices { 𝑝, 2𝑝, 1,2𝑝 − 1, 𝑝 +
1,3𝑝 − 1,2𝑝 + 1, 𝑝 − 1}  make a cycle 𝐶8 

(border of the graph) and by proposition 

2.4.3 we have exactly 
(𝑝−3)

2
   subgraphs  (𝐶4⦁⦁𝐶4) since the vertex 

p is adjacent with {1,4,7, … ,3𝑝 − 2} − 𝑝 ⊂
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𝑉2   and 2𝑝 is adjacent with the 

vertices {2,5,8, … ,3𝑝 − 1} − 2𝑝 ⊂ 𝑉2  then 

p and 2p inserting two edges to the vertices 

𝑎𝑖, 𝑎𝑖
−1  in  𝑉2  and 𝑎𝑖, 𝑎𝑖

−1  is a part of 𝐻𝑖 

then 𝕽𝟃(𝑍3𝑝) ≅  𝑝 ⫶ 𝐻𝑖 ⫶ 2𝑝 

For (case2): 

It is clear that in case two the vertex p is 

adjacent with 2𝑝 + 1,3𝑝 − 1 and the vertex 

2p is adjacent with 1, 𝑝 − 1,  by proposition 

2.4.2 the vertex 𝑝 + 1 is adjacent with the 

vertices 1,2𝑝 + 1 and the vertex 2𝑝 − 1 is 

adjacent with the vertices 𝑝 − 1,3𝑝 − 1 

then the vertices { 𝑝, 2𝑝, 1,2𝑝 − 1, 𝑝 +
1,3𝑝 − 1,2𝑝 + 1, 𝑝 − 1}  make a cycle 𝐶8 

(border of the graph) and by proposition 

2.4.3 we have exactly 
(𝑝−3)

2
   subgraphs  (𝐶4⦁⦁𝐶4) since the vertex 

p is adjacent with {2,5,8, … ,3𝑝 − 1} − 𝑝 ⊂
𝑉2   and 2𝑝 is adjacent with the 

vertices {1,4,7, … ,3𝑝 − 2} − 2𝑝 ⊂ 𝑉2  then 

p and 2p inserting two edges to the vertices 

𝑎𝑖, 𝑎𝑖
−1  in  𝑉2  and 𝑎𝑖, 𝑎𝑖

−1  is a part of 𝐻𝑖 

then 𝕽𝟃(𝑍3𝑝) ≅  𝑝 ⫶ 𝐻𝑖 ⫶ 2𝑝. 

 Proposition 2.4.7: The regular divisor 

graph of the ringZ3p, 𝕽𝟃(𝑍3𝑝)  is double 

butterfly graph by removing the non-unit 

vertices except {𝑝, 2𝑝}from the vertex set of 

the graph. 

               𝕽𝟃(𝑍3𝑝) ≅ 2𝐵1,𝑛𝐶3
 , n=

𝑝−3

2
  

i-  for V(𝕽𝟃(𝑍3𝑝))- 𝑉3 ∪ {𝑝 − 1,2𝑝 +

1} in case one. 

ii- or V(𝕽𝟃(𝑍3𝑝)) - 𝑉3 ∪  {𝑝 + 1,2𝑝 −

1} in case two. 

 

Proof: The vertex set of the graph 

(𝕽𝟃(𝑍3𝑝) is three partite sets as follow: 

𝑉1(𝑍3𝑝) = {1, 𝑝, 2𝑝, 𝑝 − 1,2𝑝 − 1,3𝑝 −

1, 𝑝 + 1,2𝑝 + 1}  

  𝑉2(𝑍3𝑝) = {𝑎𝑖 : 𝑎𝑖  is unit element for all 

𝑖 = 1,2, … . 2(𝑃 − 3)}  

𝑉3(𝑍3𝑝) =  { 𝑏𝑗 , 𝑗 = 1, 2, … (𝑝 − 3), all 

other non-unit elements} ={ 3𝑘, 𝑘 =
1, 2, … (𝑝 − 1)} 

In case one  

The nun unit vertices except {p,2p} are 

equal to the vertices in 𝑉3 ∪ {𝑝 − 1,2𝑝 + 1} 

and by removing these vertices remain the 

vertices {𝑝, 2𝑝, 1,2𝑝 − 1, 𝑝 + 1,3𝑝 − 1} ⊂

𝑉1 with all vertices in 𝑉2 , since in case one 

the vertex  𝑝  is adjacent with the vertices 
{1,4,7, … ,3𝑝 − 2} − 𝑝 ⊂ 𝑉2   except 

{1,2𝑝 − 1} ⊂ 𝑉1and 2𝑝 is adjacent with the 

vertices  {2,5,8, … ,3𝑝 − 1} − 2𝑝 ⊂ 𝑉2 

except {𝑝 + 1,3𝑝 − 1} ⊂ 𝑉1  , then p with 

the vertices 1,2𝑝 − 1  make two paths 𝑃2  

and 2p with the vertices 𝑝 + 1,3𝑝 − 1 make 

two paths 𝑃2 and all other vertices that are 

adjacent with p and 2p they are in 𝑉2 and 

they are unit each 𝑎𝑖 ∈ 𝑉2  is adjacent 

with 𝑎𝑖
−1 ∈ 𝑉2  , So,  ( 𝑎𝑖, 𝑝, 𝑎𝑖

−1  )  and  ( 

𝑎𝑖, 2𝑝, 𝑎𝑖
−1  )  make the cycles 𝐶3  then we 

get two butterfly by removing all nun-unit 

elements except 𝑝, 2𝑝  in the graph 

(𝕽𝟃(𝑍3𝑝)), as shown in the figure-2.12- 

In case two 

The nun unit vertices except {p,2p} are 

equal to the vertices in 𝑉3 ∪ {𝑝 + 1,2𝑝 − 1} 

and by removing these vertices remain the 

vertices {𝑝, 2𝑝, 1, 𝑝 − 1,2𝑝 + 1,3𝑝 − 1} ⊂
𝑉1 with all vertices in 𝑉2 , since in case two 

the vertex  𝑝  is adjacent with the vertices 
{2,5,8, … ,3𝑝 − 1} − 𝑝 ⊂ 𝑉2  except {2𝑝 +
1,3𝑝 − 1} ⊂ 𝑉1 and 2𝑝 is adjacent with the 

vertices  {1,4,7, … ,3𝑝 − 2} − 2𝑝 ⊂ 𝑉2  

except {1, 𝑝 − 1} ⊂ 𝑉1  , then p with the 

vertices 2𝑝 + 1,3𝑝 − 1 make two paths 𝑃2  

and 2p with the vertices 1, 𝑝 − 1 make two 

paths 𝑃2  and all other vertices that are 

adjacent with p and 2p they are in 𝑉2 and 

they are unit each 𝑎𝑖 ∈ 𝑉2  is adjacent 

with 𝑎𝑖
−1 ∈ 𝑉2  , So,  ( 𝑎𝑖, 𝑝, 𝑎𝑖

−1  )  and  ( 

𝑎𝑖, 2𝑝, 𝑎𝑖
−1  )  make the cycles 𝐶3  then we 

get two butterfly by removing all nun-unit 

elements except 𝑝, 2𝑝 in the graph 

(𝕽𝟃(𝑍3𝑝)), as shown in the figure-2.13- 
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Figure 2.12 

         
Figure 2.13 

 

Corollary 2.4.8: The clique number of 

regular divisor graph 𝕽𝟃(𝑧3𝑝)  is equal to 

3. 

𝜔(𝕽𝟃(𝑧3𝑝) = 3  

 

Proof: From the fact that this graph is 

planner graph and the smallest cycle in 

regular divisor graph 𝕽𝟃(𝑧3𝑝 ) is 𝐶3 

obtained from the adjacency between the 

vertices  𝑝, 𝑎𝑖−1, 𝑎𝑖−1
−1   and  2𝑝, 𝑎𝑖 , 𝑎𝑖

−1  for 

all 𝑎𝑖−1, 𝑎𝑖−1
−1 , 𝑎𝑖, 𝑎𝑖

−1  ∈ 𝑉2   then the 

smallest complete subgraph is 𝑘3 . 

Theorem 2.4.9 Chromatic number 

𝒳 (𝕽𝟃(𝑍3𝑝)) = 3 

Proof:  For case1 we give the same color to 

coloring the vertices 𝑝, 2𝑝, 2𝑝 + 1, 𝑝 −
1, {𝑏1, … , 𝑏𝑗} and we use another color to 

coloring the vertices 1,2𝑝 − 1, 𝑝 + 1,3𝑝 −
1, {𝑎1

−1, … , 𝑎𝑖
−1, 𝑎𝑖+1

−1 , … , 𝑎𝑘
−1} , we use 

another color to coloring the vertices 

, {𝑎1, … , 𝑎𝑖, 𝑎𝑖+1, … 𝑎𝑘}, {𝑏1
~, … , , 𝑏𝑗

~},  

for case2 we give the same color to coloring 

the vertices 

𝑝, 2𝑝, 𝑝 + 1,2𝑝 − 1, {𝑏1, … , 𝑏𝑗} and we use 

another color to coloring the vertices 

1,2𝑝 + 1,3𝑝 − 1, 𝑝 −
1 , {𝑎1

−1, … , 𝑎𝑖
−1, 𝑎𝑖+1

−1 , … , 𝑎𝑘
−1} , give 

another color to coloring the vertices 
{𝑎1, … , 𝑎𝑖, 𝑎𝑖+1, … 𝑎𝑘}, {𝑏1

~, … , , 𝑏𝑗
~} , so in 

both cases we use only three different colors 

to coloring all vertices in 𝕽𝟃(𝑍3𝑝) . As 

shown in the figure-2.14-Then the 

chromatic number of 𝕽𝟃(𝑍3𝑝) is equal to 3.      

𝒳 (𝕽𝟃(𝑍3𝑝)) = 3  
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Figure 2.14: chromatic number for the general form in the regular divisor graph 𝕽𝟃(𝑍3𝑝). 

Proposition 2.4.10: Dimeter of regular 

divisor graph 𝕽𝟃(𝑍3𝑝)  

𝒟𝒾𝓂 (𝕽𝟃(𝑍3𝑝))  = 4   

Proof: For case 1, in the general form of the 

graph 𝕽𝟃(𝑍3𝑝) that is shown in the figure-

2.10-       𝑉1(𝑍3𝑝) = {1, 𝑝, 2𝑝, 𝑝 − 1,2𝑝 −

1,3𝑝 − 1, 𝑝 + 1,2𝑝 + 1}  the distance 

between the vertices in 𝑉1 are  

𝑑(𝑝, 2𝑝) = 4 , 𝑑(𝑝, 1) = 𝑑(𝑝, 2𝑝 − 1) =
1,  
𝑑(𝑝, 𝑝 + 1) =   𝑑(𝑝, 3𝑝 − 1) =
3,   𝑑(𝑝, 2𝑝 + 1) = 2,  
𝑑(𝑝, 𝑝 − 1) = 2, 𝑑(2𝑝, 1) = 3,
𝑑(2𝑝, 2𝑝 − 1) = 3,  
𝑑(2𝑝, 𝑝 + 1) = 1, 𝑑(2𝑝, 3𝑝 − 1) = 1,
𝑑(2𝑝, 2𝑝 + 1) = 2,  
𝑑(2𝑝, 𝑝 − 1) = 2, 𝑑(1,2𝑝 − 1) = 2,
𝑑(1, 𝑝 + 1) = 2,  
𝑑(1,3𝑝 − 1) = 4, 𝑑(1,2𝑝 + 1) = 1,
𝑑(1, 𝑝 − 1) = 3,  
𝑑(2𝑝 − 1, 𝑝 + 1) = 4, 𝑑(2𝑝 − 1,3𝑝 −
1) = 2, 𝑑(2𝑝 − 1,2𝑝 + 1) = 3,    𝑑(2𝑝 −
1, 𝑝 − 1) = 1, 𝑑(𝑝 + 1,3𝑝 − 1) = 2,   
𝑑(𝑝 + 1,2𝑝 + 1) = 1, 𝑑(𝑝 + 1, 𝑝 − 1) =
3,  
𝑑(3𝑝 − 1,2𝑝 + 1) = 3, 𝑑(3𝑝 − 1, 𝑝 −
1) = 1,  
𝑑(2𝑝 + 1, 𝑝 − 1) = 4 . 

The distance between p with 𝑎𝑖 equal to 1 

or 3 for all 𝑎𝑖 ∈ 𝑉2 , the distance between 2p 

with 𝑎𝑖 equal to 1 or 3 for all 𝑎𝑖 ∈ 𝑉2 , the 

distance between p with 𝑏𝑗 equal to 2 for all 

𝑏𝑗 ∈ 𝑉3  , the distance between 2p with 𝑏𝑗 

equal to 2 for all 𝑏𝑗 ∈ 𝑉3  ,the distance 

between 𝑎𝑖 equal to 1 or 2 or 3 or 4  for all 

𝑎𝑖 ∈ 𝑉2 , the distance between 𝑏𝑗 equal to 1 

or 4 for all 𝑏𝑗 ∈ 𝑉3 , the distance between 𝑎𝑖 

with 𝑏𝑗 equal to 1 or 2 or 3 for all 𝑎𝑖 ∈ 𝑉2  

and 𝑏𝑗 ∈ 𝑉3 ,  

And for case 2 

in the general form of the graph 𝕽𝟃(𝑍3𝑝) 

that is shown in the figure-2.11-  𝑉1(𝑍3𝑝) =

{1, 𝑝, 2𝑝, 𝑝 − 1,2𝑝 − 1,3𝑝 − 1, 𝑝 + 1,2𝑝 +
1} 

the distance between of vertices in 𝑉1 are  

𝑑(𝑝, 2𝑝) = 4 , 𝑑(𝑝, 1) = 3,   𝑑(𝑝, 2𝑝 −
1) = 2,  
𝑑(𝑝, 𝑝 + 1) = 2, 𝑑(𝑝, 3𝑝 − 1) =
1,   𝑑(𝑝, 2𝑝 + 1) = 1,  
𝑑(𝑝, 𝑝 − 1) = 3, 𝑑(2𝑝, 1) = 1,
𝑑(2𝑝, 2𝑝 − 1) = 2,  
𝑑(2𝑝, 𝑝 + 1) = 2, 𝑑(2𝑝, 3𝑝 − 1) = 3,
𝑑(2𝑝, 2𝑝 + 1) = 3,  
𝑑(2𝑝, 𝑝 − 1) = 1, 𝑑(1,2𝑝 − 1) = 3,
𝑑(1, 𝑝 + 1) = 1,  
𝑑(1,3𝑝 − 1) = 4, 𝑑(1,2𝑝 + 1) = 2,
𝑑(1, 𝑝 − 1) = 2,  
𝑑(2𝑝 − 1, 𝑝 + 1) = 4, 𝑑(2𝑝 − 1,3𝑝 −
1) = 1, 𝑑(2𝑝 − 1,2𝑝 + 1) = 3,    𝑑(2𝑝 −
1, 𝑝 − 1) = 1, 𝑑(𝑝 + 1,3𝑝 − 1) = 3,   
𝑑(𝑝 + 1,2𝑝 + 1) = 1, 𝑑(𝑝 + 1, 𝑝 − 1) =
3,  
𝑑(3𝑝 − 1,2𝑝 + 1) = 2, 𝑑(3𝑝 − 1, 𝑝 −
1) = 2,  
𝑑(2𝑝 + 1, 𝑝 − 1) = 4 . 

The distance between p with 𝑎𝑖 equal to 1 

or 3 for all 𝑎𝑖 ∈ 𝑉2 , the distance between 2p 

with 𝑎𝑖 equal to 1 or 3 for all 𝑎𝑖 ∈ 𝑉2 , the 
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distance between p with 𝑏𝑗 equal to 2 for all 

𝑏𝑗 ∈ 𝑉3  , the distance between 2p with 𝑏𝑗 

equal to 2 for all 𝑏𝑗 ∈ 𝑉3  ,the distance 

between 𝑎𝑖 equal to 1 or 2 or 3 or 4  for all 

𝑎𝑖 ∈ 𝑉2 , the distance between 𝑏𝑗 equal to 1 

or 4 for all 𝑏𝑗 ∈ 𝑉3 , the distance between 𝑎𝑖 

with 𝑏𝑗 equal to 1 or 2 or 3 for all 𝑎𝑖 ∈ 𝑉2  

and 𝑏𝑗 ∈ 𝑉3 

So, the maximum distance in the graph 

𝕽𝟃(𝑍3𝑝)  equal to 4, then 

𝒟𝒾𝓂 (𝕽𝟃(𝑍3𝑝))  = 4  

1. Connectivity of the regular divisor 

graph for finite commutative rings. 

A graph 𝐺  is connected if there exists at 

least one path between any pair of vertices 

in 𝐺  other wise is called disconnected 

graph. As shown in figure-3.1-, If 𝐺  is a 

disconnected graph component of 𝐺  is a 

maximal connected subgraph of 𝐺, number 

of components in graph 𝐺  is denoted by 

𝐶(𝐺). 𝐶(𝐺) is one if G is connected. 

 For any connected graph, a vertex u from 

𝐺  is named a cut-vertex of 𝐺 , if 𝐺 − 𝑢 

(remove 𝑢  from 𝐺 ) outcomes a 

disconnected graph. A proper subset �̅� ∈ 𝑉 

is a vertex cut set if the graph 𝐺 − �̅�  is 

disconnected, or trivial graph. The vertex 

connectivity of a connected graph 𝐺 is the 

smallest number of vertices whose removal 

makes 𝐺 disconnected or trivial graph and 

denoted by 𝐾(𝐺), the graph is said to be k-

vertex connected or k-connected when 

𝐾(𝐺) is the smallest size of a cut set of 𝐺 it 

means |�̅�| = 𝑘 . 

 And an edge e from a connected graph 𝐺 is 

named a cut-edge(bridge) of 𝐺  if 𝐺 − 𝑒 

(remove e from 𝐺  ) outcomes a 

disconnected graph. A proper subset �̅� ⊂ 𝐸 

is edge cut-set if the graph 𝐺 − �̅�  is 

disconnected. The edge connectivity of 

connected graph 𝐺  is the smallest number 

of edges whose removal makes 𝐺 

disconnected and denoted by 𝜆(𝐺) . G is 

said to be m-edge connected if  𝜆(𝐺) is the 

smallest size of edge cut-set, it means |�̅�| =
𝑚 as shown in figure-3.2- 

The subgraph H of the graph 𝐺 is known a 

Block if H is connected maximal subgraph 

of 𝐺 which has no cut-vertex and the graph 

𝐺 is called Block itself if which has no cut-

vertices.[8],[11]. 

 In this section we denote the minimum 

degree vertex of the graph 𝕽𝟃(𝑧𝑛)  by 

𝛿(𝕽𝟃(𝑧𝑛)) , the vertex connectivity of 

𝕽𝟃(𝑧𝑛)  is denoted by 𝐾(𝕽𝟃(𝑧𝑛))  , and 

𝜆(𝕽𝟃(𝑧𝑛))  is the edge connectivity of 

𝕽𝟃(𝑧𝑛)        

Theorem 3.1: In the regular divisor graph 

for the ring (𝑍2𝑝) ( 𝑝 is prime number and 

𝑝 ≥ 3 ) has only one cut-vertex, then is 1-

connected graph. 

Proof: Since p is center of the graph 

𝕽𝟃(𝑍2𝑝)  which is greatest degree 

𝑑𝑒𝑔(𝑝) = 𝑝 − 1  , it is clear that by 

removing the vertex p in 𝕽𝟃(𝑍2𝑝) we get 

the following graph show in the figure-3.1- 

 
Figure 3.1: cut-vertex in 𝕽𝟃(𝑍2𝑝) 

And this graph is disconnected graph, then 

𝕽𝟃(𝑍2𝑝) has only one cut-vertex and it is 1-

connected graph. 

Theorem 3.2: The graph 𝕽𝟃(𝑍3𝑝)  ( 𝑝  is 

prime number and 𝑝 ≥ 5 )  is 2-connected 

graph.  

Proof: Since p and 2p are centers of the 

graph 𝕽𝟃(𝑍3𝑝)  which are greatest degree 

𝑑𝑒𝑔(𝑝) = 𝑝 − 1   and 𝑑𝑒𝑔 (2𝑝)  = 𝑝 − 1 , 

it is clear that by removing the vertices p 

and 2p in 𝕽𝟃(𝑍3𝑝)(that shows in figure-

2.10- and figure-2.11-) we get the following 

https://doi.org/10.25130/tjps.v28i5.1587


  

 

  
Tikrit Journal of Pure Science (2023) 28 (5):158-175 
Doi: https://doi.org/10.25130/tjps.v28i5.1587   

 

173 

graph show in the figure-3.2- and figure-

3.3- 

 
Figure 3.2 

 
Figure 3.3 

And these graphs are disconnected graphs, 

have two cute-vertices, then 𝕽𝟃(𝑍3𝑝) is 2-

connected graph. 

Theorem 3.3: The graph 𝕽𝟃(𝑍2𝑝) has only 

one cut-edge(bridge) and 1-edge connected. 

Proof: The graph 𝕽𝟃(𝑍2𝑝)  is connected 

graph, has two types of vertices set 𝑉1 =
{1,3,5, … ,2𝑝 − 1}  and  𝑉2 =
{2,4,6, … ,2(𝑝 − 1)},  and has four types of 

edges with respect to the regularity for the 

ring 𝑍2𝑝. 

Type one is the edges (𝑝, 𝑎𝑖) for all 𝑎𝑖 ∈
𝑉1 − {𝑝} since 𝑝 ∈ 𝑉1  is the center of graph 

(proposition 2.3.1) and have maximum 

degree since it is adjacent with all other 

vertices in  𝑉1  (𝑝 = 𝑝. 𝑎𝑖. 𝑝 , ∀ 𝑎𝑖  ∈   𝑉1 −
{𝑝}   ). 
Type two is the edges (𝑎𝑖, 𝑎𝑖

−1)  for all 

𝑎𝑖, 𝑎𝑖
−1 ∈ 𝑉1 − {𝑝}  since the elements in  

𝑉1 − {𝑝}  are unit elements, then they are 

adjacent each together 𝑎𝑖 𝑤𝑖𝑡ℎ 𝑎𝑖
−1 , ∀ 𝑎𝑖 ∈ 

𝑉1 − {𝑝}. 

Type three is the edges (𝑎𝑖, 𝑏𝑖) for all 𝑎𝑖 ∈
𝑉1 − {𝑝} and   𝑏𝑖 ∈ 𝑉2  since  𝑏𝑖 ∈ 𝑉2  is 

adjacent with 𝑎𝑖 ∈ 𝑉1 − {𝑝} , 𝑏𝑖 = 𝑏𝑖. 𝑎𝑖. 𝑏𝑖 

. 

Type four is the edges (𝑏𝑖, 𝑏𝑖
~)  for all 

𝑏𝑖  and  𝑏𝑖
~ ∈ 𝑉2  since  𝑏𝑖 ∈ 𝑉2  is adjacent 

with  𝑏𝑖
~ ∈ 𝑉2 since 𝑏𝑖 = 𝑏𝑖. 𝑏𝑖

~. 𝑏𝑖 . 

If we remove any edge from type two or 

type three or type four the graph 𝕽𝟃(𝑍2𝑝) 

still connected but if we remove the edge 

(𝑝, 1) or (𝑝, 2𝑝 − 1) on type one we get the 

new disconnected graph then the edge 

(𝑝, 1)  or (𝑝, 2𝑝 − 1)  is bridge then the 

graph 𝕽𝟃(𝑍2𝑝)  has only one cut-edge 

(bridge) and 1-edge connected. 

Theorem 3.4: The graph 𝕽𝟃(𝑍3𝑝)   is 2-

edge connected. 

Proof: If we look at figure-2.10- and figure-

2.11- in which them the general form of the 

graph 𝕽𝟃(𝑍3𝑝) is shown. We see that by 

removing the edges (𝑝, 1)  and(2𝑝, 𝑝 + 1) 

or the edges (𝑝, 2𝑝 − 1) and (2𝑝, 3𝑝 − 1) 

in the first case and removing the 

edges (𝑝, 2𝑝 + 1) and (2𝑝, 1) or the edges 

(𝑝, 3𝑝 − 1) and (2𝑝, 𝑝 − 1)  in the second 

case we will get a new graph that is a 

disconnected graph, this is the minimum 

number of edges that removing in the graph 

𝕽𝟃(𝑍3𝑝)  we can get a disconnected graph. 

Then the graph 𝕽𝟃(𝑍3𝑝) has two cut-edges, 

then the graph 𝕽𝟃(𝑍3𝑝)  is 2-edge 

connected. 

Remark 3.5 

The graph 𝕽𝟃(𝑍2𝑝) is connected graph and 

since in every connected graph 𝐺, 𝐶(𝐺) =

1 , then  𝐶 (𝕽𝟃(𝑍2𝑝)) = 1. But after 

removing the vertex p we get a 

disconnected graph and number of 

Components in this disconnected graph is 
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𝑝+1

2
 such that the components are show in 

the figure-3.4- 

 
Figure 3.4: components 

And the graph 𝕽𝟃(𝑍2𝑝) is not blook since 

by (theorem 3.1) it has a cut-vertex p but 

have subgraphs are block such that the 

subgraphs are show in the figure-3.4- are 

block subgraphs. 

Then the graph 𝕽𝟃(𝑍2𝑝)  have 
𝑝+1

2
 

subgraphs that are block subgraph. 

Remark: 

The graph 𝕽𝟃(𝑍3𝑝) is connected graph and 

since in every connected graph 𝐺 number of 

components is equal to 1 then number of 

components in the graph 𝕽𝟃(𝑍3𝑝) is equal 

to 1. But after removing the vertices p and 

2p in 𝕽𝟃(𝑍3𝑝) we get a disconnected graph 

and number of components in this 

disconnected graph is 
𝑝+1

2
 such that the 

components are show in the figure-3.5- and 

figure-3.6- 

 
Figure 3.5 

 
Figure 3.6 

Theorem 3.7   𝛿(𝕽𝟃(𝑧2𝑝)) = 𝐾(𝕽𝟃(𝑧2𝑝)) 

= 𝜆(𝕽𝟃(𝑧2𝑝)) . 

Proof:  In figure-2.4- it is clear the 

minimum vertex degree is 1 such that two 

vertices 𝑝 + 1  and 𝑝 − 1  have degree 1, 

then  𝛿 (𝑅𝑑(𝑧2𝑝)) = 1. 

By theorem 3.1 the graph 𝕽𝟃(𝑧2𝑝)  is 1-

connected graph then 𝐾 (𝕽𝟃(𝑧2𝑝)) = 1 , 

and by theorem 3.3 the graph 𝕽𝟃(𝑧2𝑝) is 1-

edge connected, then 𝜆(𝕽𝟃(𝑧2𝑝)) =1. So, 

we get the result 𝛿(𝕽𝟃(𝑧2𝑝))  = 

𝐾(𝕽𝟃(𝑧2𝑝)) = 𝜆(𝕽𝟃(𝑧2𝑝)) . 

Theorem 3.8   𝛿(𝕽𝟃(𝑧3𝑝)) = 𝐾(𝕽𝟃(𝑧3𝑝)) 

= 𝜆(𝕽𝟃(𝑧3𝑝)) . 

Proof: In figure-2.10- and figure-2.11- it is 

clear the minimum vertex degree is 2 such 

that in both cases the vertices 1, 𝑝 + 1.2𝑝 +
1, 𝑝 − 1,2𝑝 − 1 and 3𝑝 − 1  have degree 2. 

Then 𝛿(𝕽𝟃(𝑧3𝑝)) =2. 

By theorem 3.2 the graph 𝕽𝟃(𝑧3𝑝)  is 2-

connected graph then 𝐾 (𝕽𝟃(𝑧3𝑝)) = 2. 

And by theorem 3.4 the graph 𝕽𝟃(𝑧3𝑝) is 

2-edge connected, then 𝜆 (𝕽𝟃(𝑧3𝑝))=2 

So, we get the result 𝛿(𝕽𝟃(𝑧3𝑝))  = 

𝐾(𝕽𝟃(𝑧3𝑝)) = 𝜆(𝕽𝟃(𝑧3𝑝)) . 
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