Tikrit Journal of Pure Science (2023) 28 (5): 129-146
Doi: https://doi.org/10.25130/tjps.v28i5.1588

% Tikrit Journal of Dure Science

186V § ISSN: 1813 — 1662 (Print) --- E-ISSN: 2415 — 1726 (Online)

—=

Y =
et el | i 2 IS 2 i Sk |

Journal Homepage: http://tjps.tu.edu.ig/index.php/j

Bifurcation Analysis in a Discrete-Time Prey-Predator System with

Crowly- Martin Functional Response
Jaza Omer Muhammed™, Asst.Prof. Kawa Ahmed Hassan?
12 Department of Mathematics-College of Science-University of Sulaimani, Sulaymaniyah-Iraq

Keywords: discrete, prey-predator, ABSTRACT
Crowly- Martin, fixed point In this paper, a discrete time prey-predator system
with Crowly- Martin functional response was
_ I_‘RT_ICI‘EINFO' studied. The fixed points of the model are obtained,
Article history: and their stability is analyzed. Further existence of
-Received: 13 Jan. 2023 | bifurcation analysis at each fixed point and Hopf
bifurcation are demonstrated. Numerical simulation
show that the model perhaps has more complex
-Accepted: 28 Feb. 2023 dynam.ical_ beha\{iors, such as .the peric_;d-5,_10,20 a_lnd
35 orbits, including the periodic doubling bifurcation
in period-2,4,8 and 16 orbits and chaotic set.

-Received in revised form: 26 Feb. 2023

-Final Proofreading: 24 Oct. 2023
-Available online: 25 Oct. 2023

Corresponding Author*:
Jaza Omer Muhammad
jaza.mohammed@univsul.edu.iq

© THIS IS AN OPEN ACCESS ARTICLE UNDER
THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

129


https://doi.org/10.25130/tjps.v28i5.1588
http://tjps.tu.edu.iq/index.php/j
mailto:jaza.mohammed@univsul.edu.iq
http://creativecommons.org/licenses/by/4.0/

Tikrit Journal of Pure Science (2023) 28 (5): 129-146

Doi: https://doi.org/10.25130/tjps.v28i5.1588

TJPS

Crowly-Martin &ilaiu a3 ge Gasitall-dedll Jakia Sia) alli b caddl) Jolas

Cyns daaf 0glS” (lana ges fia

Gl = S sl — Lsilasdeal) dnals — aglell LudS ~ Ciliialipl] aesd ™
gl

AU LEll Je Jgeandl o3 Eua .(Crowly-Martin) aalat ) M\J@w)ﬁdl-@)éﬂdmw) Alad Au) jy Cuad (Zaadll AL
CJ}AJ\Q\A&JM\BLSM\J@Lﬁmﬁywﬁwjhuhdsguuﬂ\dﬁjd#wa LGJ‘:‘J‘)Q"‘”\M?SJCJ}A‘“

ALELY 6l b Cieliadll (550l o il Gy i Ley YO Y

1. Introduction

The dynamic of discrete-time model is still an
important topic of reserch becouse appears in a
variety of application such as ecology and
mathematical biology. In ecology, plant-
herbivor or prey-predator models can be
written as discrete time model. A plant-
herbivor model refer to investigate interaction
between a plant types and herbivor types.
Discrete models described by difference
equations for interacting populations are of
significant attention to biologists. Discrete-
time models are more appropriate than
continuous time models when the population
have non-overlap generation. This definitely
occurs for population that have one-year life
like insect. A discrete-time model can display
more complicated dynamical behaviors than a
continuous-time model of the same type.

Lotka-Volterra is one of the most known
models to the investigate dynamic behavior of
the predator-prey system. A pair of first-order
nonlinear differential equation, often used to
explain the dynamics of biological system, the
interaction between them are of two types, one
a predator and the other prey.
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In theory of population dynamics, includes
two types of mathematical models, the discrete
time models and countious time model. The
simplest countinous time model, first
introduced by Verhulst [1] and later further
attention by Pearl and Reed [2]. The result of
discrete time models are richer compared than
continous time models, becouse in the discrete
time models is obtained accurate numerical
simulations result. Morover, discrete time
models are more appropriate than the
continuous time models. Authors have already
focused on the Prey-predator models. For
example, the stability and the existence of
periodic solution of the prey-predator models
studied in [3], [4], [5], [6] and [7].

The functional response is the rate which an
animal consumes prey per unit time. Holling,
organized the functional response into three
types: Holling type I, Il and 111 [8] and [9]. The
intrinsic charateristic of these function,
predators benefit when there are more prey in
inviroment, which is true in many predator prey
interaction. The type of functional response are
summarized in Table 1

Table 1: Holling types of functional respones

Holling type Definition
I D(x) = pux
ux
I ®(x) =
) a+x
2
ux
i ®(x) =
) a + x?
v ®(x) = =
a + x?
Beddington ux
xX,y) =
DeAgelis *x.7) 1+by+ax

However, authors don’t much describe about
the dynamical behavior of prey-predator

Generalized form Applications
[10]
pac” 11] and [12
=~ - an
() = 1oz (0>~ [Hand[12]
- _
PO) =Tz (0> 2v/a)  [13]and [14]

[15]

models, which include bifurcation and chaos
phenomena for the discrete time models. Liu
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and Xiao [16] and He and Lai [17]. Obtained the
flip bifurcation by using center manifold
theorem and bifurcation theory.

initially, Lotka (1925) [18] and Volterra
(1926) [19] have described prey-predator
system, always be in the following form

{x =xq(x) —yp(x,y) )
y=y@px,y)—vy)

where x(t) show the prey density and y(t)
show the predator density, the function p(x, y)
describes the predator functional response and
6 is the conversion rate of prey into predators
and y predator death rate. In this paper is used

Crowly-Martin of functional
response p(x,y) = ooy qx) =1
x, then Eq(1) becomes the following
(%= x(1—2x) — mxy

*=x( *) 14+ cx)(A+cy) @

i‘ omxy

V=Y i et ran P
where cq, ¢, and m are nonnegative paramers.
The dynamical behavior of model (2) in the
mathematics literatures for rare cases have
happened. If ¢, = 0 of the model (2) have been
investigated by many writer [20],[21] and [22]
and it was demonstrated that only stable
equilibrium point or limit cycle are included in
dynamic. Applying Euler scheme to model (2)
we obtain the descrite time system

{xnﬂ =X, + C5xp (1 — Xn

Yn+1 = Yn t CsYn (

_ Yn >
(1 + crx) (1 + o)

C3Xn c >
4

I+ )X+ coym)

where c5 is the step size. We will focus on the
discrete time model (3) in the closed first
quadrant R% on the (x,y) plane. Our goal in
this paper is demonstrated complex dynamical
behavior. Furthere, it can be shown that the
model (3) undegoes flip bifurcation and Hopf
bifurcation by using center manifold theorem
and bifurcation theory.

The arranging of this paper is as follows: in
Section 2, we study the existence three fixed
point of the model (3) and stability. Section 3,
mainly analyze the flip bifurcation and Hopf
bifurcation of the model (3) in the interior R3.
Section 4, we present the numerical simulation,
which not only show our results but also explain
the complex dynamical behavior, includig
bifurcation diagrams and different types of
attractors. A brief conclusion is given section 5.

3
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2. Fixed points and their stability
analysis

Consider the dynamical behavior of the model
(3) in the closed first quadrant R2 on the (x,y)
plane. We will try to find it is fixed point and
study their stability. To determine the fixed
point of model (3) satiesfy the following
equation

_ o y

xX=x+ CsX (1 x (1+clx)(1+czy)) (4)
=y+c (—ch —c )

y y 5Y (1+c1x)(1+cy) 4

By solving the equation (4), we have the
following Lemma.

Lemma 2.1

(i) For all positive parameter, the model (4)
always has two fixed point E,(0,0) and

El (1'0)

(i) The positive fixed point E,(x*, y*) exists
in the Int. R2 if there is a positive solution to
the following set of

equation.
y —

1—x— Tremiay = 0 (a),
—c, 4+ ——58% (b) ®)

ot e rayy = 0 .
x _ (c3—c104)x"—Cy
From Eqg. 5 (b) we can get, y* = oLt
and y* >0 such that —*— < x* <1, by

C3—C1Cy
substituting the value of y* and solving for x*
we get the polynomial equation k(x) where
k(x) = cicpc3x3 + cyc3(1 — ¢)x? +
(c3—crea —Ce3)x =y =0 (6)
We have k(0) =—c, <0 and k(1) =c3 —
c1€q — C4 > 0, by intermediate value theorem
there exist at least positive x* € (0,1) such that
k(x*) = 0.

Next, we will study stability of fixed point E,
E; and E, of model (3), by introducing the
following Lemma.

Lemma 2.2 [16] Let F(1)=4% — BA + C.
Suppose that F(1) > 0, A; and 4, are two
roots of F(4) = 0. Then

(i) [A4] <1 and |2, <1
F(-1)>0andC < 1;

(i) |21l <1and |2y > 1 (or |A4] >

1 and |4,| < 1) ifand only if F(—1) < 0;
(iii) [A4] > 1 and [1,| > 1 ifand only if
F(-1)>0andC > 1,

(iv) 4, =—=1and A, # 1ifand only if
F(-1)=0and B # 0,2;

if and only if
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(V) A, and A, are complex and [A4] = |4,] if The eigenvalue of the jacobian matrix are 4, =
andonly if B2 —4C < 0and C = 1; 14+cs and A, =1 —c4cs, we have the

Let A, and A, be the two roots of jacobian following result.

matrix, which are called eigenvalues of the
fixed point (x, y). We recall some definitions of
topological types for a fixed point (x,y). A

Lemma 2.3 For the fixed point E,, we have the
following conditions

. . . 2
fixed point (x, y) is called a sink if |1;| < 1 and (i) E; isasaddleif 0 <c5 <~
|A2] <1, (x,y) is called a source if |[A4;] > 1 i E is a source ifce > 2
and |1, > 1, (x,y) is called a saddle if |1,] > (1) £o , "
1and |A,] <1 (or |A;] < 1and]|1,| > 1), and (iii) When ¢g = o so one of the eigenvalues
(x,y) is called non-hyperbolic if either |4,] = 1, = —1, we have a non-hyperbolic fixed point
lor|2,|=1. at E,(0,0) which is repelling

Proof. In the present case c,c5 =2, we

Jacobian matrix for the fixed point E,(0,0) is calculated lower the center manifold at E, and

given by the dynamics reduced to the center manifold to
_[1+es 0 determine the orbit around E, in the first
](EO) - 0 1—c.c 2
4Cs quadrant R%.

y
fy) = x+cs (1 R 1+ c0)(A+cyy)
—cZcsx3y — cycpcsx%y? — c2esxy® + 0(5),
C3x
A+cx)A+cyy
+cicyesx3y + cicpc305x2y? + c2ezesxy® + 0(5).

) = (1 + cg)x — csx? — csxy+cycsx?y + cyc5xy?

()

91 (xy)= y+ Cs)’( - C4> = (1 — c4C5)y + c3C5xy — €165C5x°Y — €2€3C5xy°

Then the equation (7) is Jordan normal form, we have the followin model
(x) N (1 +cs 0 ) (x) + —csx? = csxy + cicsx?y + cpc5xy? + 0(3)
y 0 -1/ \y C3CsXy — C1C3Csx2y — cyc3¢5xy? + 0(3)

Thus, the center manifold is defined by Lemma 2.4 For the fixed point E;, the are at

y=h¢(x)=ax?+px3+0(4) =0 least four different topological classification
Then the dynamic on the center manifold is h_OId: L
defined by the following map () Eyisa SmkanfS f c4(1+c¢)and0 <
. +cy
x e (14 cs)x —csx? + 0(3) €5 < mln{z’c4(1+c1)—c3}’

(i) Ey isasource if cs > 2 and c3 > ¢, (1 +

c1)0r (c3 < c4(l+c¢q) and c5 >
2(1+cq)

which shows that x = 0 is repelling. Therefore,
first derivate of right side at x = 0 is greater

than one [23]. max{2, — -~}
(i) Ey isasaddle if cs < 2 and c3 > ¢, (1 +
Jacobian matrix for the fixed point E;(1,0) is or (((0 204¢1) . <2V or(2 <
given by Cl) (2(((1 <)C4(1+C1)—C3 s ) (
+cq .
1—c, B Cs Cg m)) and c3 < ¢, (1 + ¢y));
1+ ¢ (iv) Whene c3 = c4(1 + ¢, ), so one of the
J(E) = c3—ca(1+c¢q) eigenvalue 1, = 1, we have a non-hyperbolic
0 1+cs BT fixed

] ) ) ) point at E;(1,0) which is repelling
The eigenvalue of the jacobian matrix are 4, =

_ _ c3—c4(1+cy) Proof. In the present case c; = ¢, (1 + ¢;), we
1-c anq Aa=1+cs ( 1+es ) we have calculated lower the center manifold at E, (1,0)
the following result. and the dynamics reduced to center manifold to

determine the orbit around E;(1,0) in the first
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quadrant RZ. First, we transform the fixed point
E;(1,0) into the origin by using a linear

transformation, i.e. (x,y) = (x + 1,y). Then it
become the following map.

y 5 Cs
y) = 1—x-— -1=(1- o e —
f2(y) Xt G ( * A4+cxa+ czy)> (1 =cs)x 14+ y—esX (14 ¢p)? xy
2
CyCs 2 C1Cs 2 CyCs 2 CyCs
- 0(4),
+1+cly +(1+cl)2xy (1+c1)2xy 1+c1+ )
C3x ) C3Cs €203Cs €1C3C5
)= y+ - =y+ - -
9(xy) =y CSy((1 Fonl+cy 77 a0+t T 1+a) T @+ ”
2
€2C3Cs 5, C2€3C5 4
—————xy*+——y*+ 0(4).
(1+cl)2xy 1+cly )
Next, by using linear transformation of Equation (8) in Jordan normal form
x 1 L u 1
_ _(u+ v
0= )= (v 17a")
0 -1 -V
This bring in to the followin
(g tea)tea(l+a)? (1) b2 Cs(ca +2¢, +1)
(1+¢)3 (14 c1)?
u 1—cs O\ u
()= (7" DE)+| —eswt+ 0
C4Cs cacs(co(1+¢)*+1)
—_— 0(3
\ A+ 2t ageyp V10O
Thus, the center manifold defined by
((cr + ) + (1 + )% (e — 1))
u=h@) =av?+pr3+0(4) = - d+o)e v? + 0(3).

Then the dynamic on the center manifold id Proof. Same as to the Proof (iv) in Lemma (2.4),
defined by the following map for the case, cg =2, we can obtain

csCs(c2(1+¢1)? +1)
(1+¢;)?

Which see that v = 0 is repelling. Therefore,
first derivative of right side at x = 0 equal to
one and secound derivative is gretar than zero
[23]
From the Lemma (2.4) we obtain, for a fixed
point E;(1,0) if (cq, ¢35, €3, €4, C5) € R Where

(2%

v? + 0(3),

R = {(c1,¢2,¢3,€4,¢5) € (0,0):¢5 = 2,¢3
#cy(14¢q),c5
2(1 + Cl)
c,(1+c¢y) —c3
=1..5}

Therefore, a flip bifurcation can appear if
parameters change in a small neighborhood of
R. When the (¢4, ¢y, 3,4, C5) € R, amodel (3)
restricted to this center manifold.

,Ci>0,i

Proposition 2.5 Whene cs = 2, so one of the
eigenvalue 1, = —1, we have a non-
hyperbolic fixed point at E; (1,0) which is
attracting.

133

We(1,0):v = h(u) = 0 and
ur —u—2u*+0@3), asu—0

which see that u = 0 is attracting. Therefore,
first derivateve of right side at x = 0 equal to
negative one by wuse this —-2f""(x)—
3(f"(x))? at x = 0 is less than zero [23]

Jacobian matrix for the fixed point E;, (x*, y*) is
given by

JE) =[]

21 J22

Where
Jjii=1+c¢s (—x*
+ (1

j12

—c,(1—x")(1+ clx*))

TJPS
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Ja1
= c3c5(1
T
=1—cyc4c5(1 —x")(1 + c1x7)
Charateristic equation of the jacobian matrix at
E,(x*,y*) can be written as

FQ1) =
22 =Tr(J(x*,y")A + Det(J(x*,y*)) =0
Where

j22

Tr(J(x*,y")) =2—csN”" and
Det(J(x*,y*)) =1—csN* + M",
and

M =c,(1—x") (02(1 +cx)(2x* — 1)

P )
1+ cx*/
N =x"+(1—-x") (0264(1 +c1x")

cix” )
1+ cqx*

From Lemma 2.2, we obtain the following
result.

Lemma 2.6 If N* > 2vVM* then E,(x*,y*) of
model (3) is

(i) Ex(x*,y")isasinkif0 < cgM* < N* —
VN** —4aM*,

(ii) Ey(x*,y*) isasource if csM* > N* +

VN —aM~,

Ay = {(c1,¢p,C3,C4,C5) € (0,40):csM* = N* ++/N** — 4M*,

or

A, ={(c1,¢y,€3,C4,C5) € (0, +0):csM* = N* — N** — 4M*,

TJPS

(iii) E5(x*,y*) isasaddle if N* —

VN** —4M* < csM* < N* +N*? — 4aM*,
(iv) E;(x*,y™) is a non-hyperbolic if csM™* =
N* £+ N** — 4M*,

Lemma 2.7 If N* < 2+/M* then E,(x*,y*) of
model (3) is

(i) E;(x*,y*)isasinkif 0 < csM* < N*,
(ii) Ey(x*,y*) isasource if csM* > N*,

(iii) E5 (x™, ¥™) is a non-hyperbolic if csM* =
N*

3. Bifurcation Analysis

In this section, we will study the flip bifurcation
of the model (3) at positive fixed point
E,(x*,y*) by using center manifold theorem
and bifurcation theory in [14] and [19]. We set
cg as a bifurcation parameter.

First, consider model (3) at the positive fixed
point E,(x*,y") with parameter
(c1,¢y,C3,C4,C5) € Ay, The similar arguments
can consider the case of A4,.

Taking parameter (€1,€2,C3,C4,C5) =
(€10, €20, €30, C40, C50) € A;. Further, choosing
c: as a bifurcation parameter. We consider a
perturbation of model (3) in the following.

From Lemma (2.2), we easily see that one of
the eigenvalue of J(E,) is -1 and the other is
neither 1 nor -1, if condition (iv) from Lemma
(2.6) hold. Whene the parameter of the model
(3) are located in the followin set:

N* > 2/M*}

N* > 2VM*}.

Xp41 = Xp t (CSO + C;)xn (1 —Xn

~ Y )
(1 + cy0xn) (1 + c20Y)

N ( 4 *) ( C30Xn ) (9)
= C Cc —¢C
Yn+1 = Yn 50 5)Vn (1 + c0x) (A + c20V0) 0
where [cs| « 1. Letu, = x, —y” and v, = y, — y”, then fixed point E, (x", y*) transformed in to the
origin. we have

(u =uU, +x" + (c50 +c5)(u +x*)(1—u —x = i) )

1 n 50 T €5 ) Un n (ry + c1oUn) (2 + C201) (10)
= Uy + ¥+ (cs0 + 2 (W +¥%) Coolin + 1) —¢
Yn+1 nTY 50 5){Vn TY (ry + c1oun) (2 + C207p) 0

where 1 = 1+ c;ox™ and r, = 1+ ¢,y *. Expanding model (10) as a tyloar series at (u,v,czs) =
(0,0,0) to second order, become

134
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{un+1 = a U, + AV, + azud + agua v, + asvE + agci + azunct + agv,ci + aguics
* * *1\3
+a10UnVnCs + a11V565 + O(|up| + [va] + [cs])”,

Vps1 = ity + byvy, + bgu? + byu, v, + bsv? + bgci + byu,ct + bgvpct + bouZct ab
+b1oUnVnCs + byyvics + O(Jun| + |Vl + Ic51)3,
where
ar =1+ s — 2¢50X" — CsY" + 2€10C50X"Y" + C20C50Y "> — 3cToCs0x™ Y™ — 2c10C20C50%" 2y
- C20C50y*3;
ay = —CsoX™ + C10Cs0X" % + 2050C50%"Y" = C10C50X™> — 2€10C20C50X "2y — 3coCs0x" Y2,
az = —2¢sg + 2¢10Cs0Y" — 6¢2Cs50x"Y" — 2¢10C20C50Y ",
Ay = —Cs0 + 2C10C50%" + 202050y " — 3¢yCs0X™ — 4C10C20C50X™ Y™ — 3c2Cs50y ™,
as = 2C30C50X" — 2C10020050x*2 — 6C30C50X"Y",
g = X" — "2 — x'Y" + c10x"2y" + X"y E — CBx™3 Y — CroCaox™ 2y E — c2gx"y",
a; = 1=2x"—y" + 2¢ci0x"y" + Czoy*z - 3Clzox*2 y' - 2610(520x*2y*2 - szoy*3,
ag = —x"+ clox*2 + 2cy0x "y — clox*3 — 2c10c20x*2y* — 3c220x*y*2,
ag = =2+ 2c10Y" — 6c2x"y" — 2¢10C20¥"7,
Ao = —14 2¢10x" + 2050Y* — 3¢2px™ — 4eypCa0x*y* — 3c3yy*2,
Aoy = 2C20x" — 2C10C20X 2 — 6C30x*Y",
by = C30C50Y" — 2C10C30C50X" Y™ — C20C30Cs50Y "~ + 3¢0C30C50X 2" + 2010C20C30C50X Y™
+ c30C30C50Y"",
by = 1+ C30C50X" — C10C30C50X " — 2C20C30C50X"Y" + CF9C30C50X"> + 2€10C20C30C50% ™Y
+ 3¢20C30 C50%" Y% — C40C50,
by = —2¢10C30Cs50Y" + 6C20C30C50X Y™ + 2€10C20C30C50Y ™,
by = C30Cs0 — 2C10C30C50X " — 2€20C30C50Y " + 3¢30C30C50% ™" + 4€10C20C30C50X ™Y
+ 3cZc30Cs50Y ™,
bs = —2C30C30C50X" + 210C20C30C50% "> + 6C2C30C50%"Y",
be = C30X"Y" — C10C30X ™Y = C20C30%" Y™ + c2pC30x ™Y + C10C20 C30% " Y% + cFez0xy
by = C30)" — 2C10C30X"Y" = C20C30Y"" + 3ckoC30X" 7Y™ + 2€10C20C30X Y + c20C30Y"°,
bg = C30X" — C10C30%" " — 2050C30%"Y" + cFC30x™> + 2010C20C30X "2y + 3c0C30%" Y™ — Cq0,
bo = —210C30Y" + 6¢0C30x™Y" + 2010C20C30Y ",
bio = C30 — 2C10C30%" — 2C20C30Y" + 3cFoC30%™? + 4C10C20C30%"Y" + 3c30C30Y ™,
bo1 = —2C30C30%" + 210C20C30X ™" + 63C30x" V",
Using the following transformation
=1 =% 4206
U Vi —1-a; A —a;/\j,
where T ia an invertible matrix, can be written model (11) we have
{fn+1 = —Xp + ¢1(Xn, I, C;) + 0(|%n| + |Jn| + |C;|)3: (12)
In+1 = A2V + Y1(Zn, I C;) + 0(|%pn| + [Pnl + |C§|)3,
where
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h1(Xn, P c3) = m{ag(%@z —ay) — azb3) —a(1 + ay)(as (A, — ay) — azby)

+ (14 a;)*(as(A; — ay) — aybs)}%

+ m{zaz(%(ﬂz —ay) —aybs) +a,(A, — ay)(as(A, —ay) —ayby)

—a;(1+ay)(as(A; — a;) — azby)

—2(1+ a)(A; — ay)(as(Ay — ay) — aybs)}%, I

" m{a%(a3(ﬂz — 1) — azb3) + a;(A; — a;)(as(A; — a1) — azby)
Ay —ay) —azb

+ (A2 — )% (as(2; — a1) — azbs)}yy + 2l Czlz (/1?1 1)a2 2c3

+ az(a;(A; —aq) —azb;) — (1 + ay)(ag(A; —aqy) —azbg) _

ay(Ay + 1) nfs
n az(a;(Az —ay) —azby) — (A — a;)(ag(A, — ay) — azbg) _ «
a1z + 1) e

Y1(En, Pnoc5) = m{ag(%(l + a;) + azb3) —a(1 + a;)(a,(1 + ay) + azby)

+(1+ a)*(as(1 + ay) + azbs)}%;
+ ———<{2a,(a3(1 + ay) + azb3) + a,(A; — ay)(as (1 + ay) + azb,)
a,(1, +1)
—ay(1+a)(as(1+ ay) + azby) +2(1 + a)(A; — ay)(as(1 + ay) + aybs)} %, Iy,
+ m{a%(%(l + ay) + azb3) + a;(A; — ag)(as (1 + aq) + azby)
. ag(1+ay)—ayb
+ (A — ap)?*(as(1 + ay) + ay b))}y + : az(/121+ ) 20 cs
+ a(a;(1+ay) +azb;) — (1 + ay)(ag(1+aqy) + azbg) _
ay(A, + 1) nes
+ a(a;(1+ ay) + azby) + (A, — ay)(ag(1+ ay) + azbg) _
a,(A; + 1) nes
From the center manifold theorem given by [14] and [19], we determine center manifold W€(0,0) of
model (12) at fixed point (0,0) in a small neighborhood of c: which can be approximately defined as
follows:

~ ~ ~ ~ % ~ ~ ~ ~ * ~ %2 ~ *
W€(0.0) = {(Rn, Fn): In = doCs + A1 %7 + GpXncs + dzcs + O(|%,| + 53,

where
- ag(1+ ay) —azbe
ao = 2 )
a,(1—23)

. (I +a(as(1+ay) +ayby) + az(1+a;) +abs  (1+a)?(as(1+ay) + azbs)
= 2Z-1 1- 22 ay(1—12) '
G = (1 +ay)(ag(1 +ay) +azbg) a;(1+ay)+azb;  2d,(ag(A; —aq) — azbe)

2 az(Az + 1)? az(Az + 1)2 az(Az + 1)2
G = ag(A; — ay) — azbg |Gy (ag(d; — ay) — azbg) a

3 a,(A3 - 1) a,(A, +1) 2l

From model (12) we obtain that, which is restricted center manifold W€ (0,0), we have

H(fn) =—X, + (»b(fn: Vo C;)
= — %y + R %2 + hyRyh + hacl + RyR2cE + hsXpcl + heX2 + hoct + 0(|%,
+ lcsl) (13)
where
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_az(az(1; —a;) — azb3)
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(1 +a)(as(42 —a1) — azbsy)

h, =
! A, +1 A, +1
+ (14 a;1)*(as(A, — ay) — azbs)
a,(A; + 1) ’

o = 2a9(az(A; —a;) — azbs) + ap((A2 —a1) —(1+a+1))(ay(1; —ay) —azby)

2 A +1 A +1
_ 209(1+ a1)(A2 —ay)(as(A, — a;) — az bs) _ (1+ay)(ag(1; —a;) — agbg)
a,(1,+1) a,(1,+1)
n a;(A; —ay) —azby
A+ 1 ’
_ a,a3(az(A; — a;) — azb3) n a5 (A — a)(as(Ay — ay) — azby) N do(a; (42 —a1) — azby)
3T A +1 A +1 A +1
a5 (Az — ar)?(as(Ap — ay) — azbs)  @o(A; — ay)(ag(A, — ay) — azbg)
a,(1, +1) a,(1,+1) ’
_ 283(az(A; —ay) —azbz) | 28yd;a3(az(A; — ay) — azbs) n di(a;(A; —a1) —ab—7)
*T A, +1 A, +1 A, +1

+ ay (A2 —aq) — (1 +aq))(as(A2 — aq) — azby)

A+ 1

2d001(A; — a1)2(‘15(/12 —ay) — azbs)

2d001(A; — ag)(as(Az — aq) — azby)

a,(1,+1)

A+ 1

24, (1+ay)(A; —aq)(as(A; — ag) — azbs) 4 a; (A2 — ay)(ag(1; — ay) — azbg)

a,(1, +1)

a,(1, + 1) ’

he = 2d3(az (A, — aq) — azbs) N az((A2 —aq) — (1 + aq))(as(A; — aq) — azby)

A+ 1

+ Gr(a;(Az —ai) —azby) 2a3;(1+ay)(A; —ag)(as(A, —a—1) — aybs)

> Ay +1
1, +1
n ay(A; —aqy)(ag(A; —ay) — azbg)
a,(1, +1) ’

a,(1, + 1)

h — 2dy(az(4; — aq) — azbs) N a1 (A2 —a1) — (1 —ay))(as(A; — ay) — ayby)

6 A +1

2 +1

~28,(0 + a1)(Az —a)(as(A2 — aq) — azbs)

a(4; +1) '
_ 2dy05(A; — a1)2(a5(/12 —ay) — aybs) n 2apa3(A; — ag)(as(A; — aq) — azby)
7 a,(A, + 1) 1, +1
2dp0za;(az(A; —aq) —azbs) ds(a; (A, —aq) —azby)
A+1 A, +1
n as(A; —aqs(ag(A; — ay) — azbg))
a,(A, +1) '
From map (13) a flip bifurcation, we require oH i 2 o
that two discriminatory quantities 8, and S, ac ho¥p + 2h3Cs + haXy + 2hsXncs
are not zero, + 3h,ct,
0H . . . 0°H
E = _1 + Zhlxn + h2C5 + 2h4xnC5 a—f% = 6h’6'
+ hscs + 3he%3, 02H 10H 0%H
0? - . Br= <~—*+——*7> l(0,0) = h2,
—— = h, + 2h4 %, + 2hscs, 0X,0c: 20ci 0%;
0X,0cs 3 2 2
2 10°H 10°H
0°H 4 6h Br={caz+(57==) |
2 = 2h1 + 2h4C5 + 6h6xn, 2 6 ax?) 2 afz (0,0
axn n n
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Finally, as a result of the above analysis and following set
theorem 3.1 in [24] we have the following. Ay = {(c1, Cz) €3 Car C5) € (0, +00): csM*
Theorem 3.1 B, and B, then the model (3) =N, N <2VM*}
undergoes a flip bifurcation at fixed point We will discuss the Hopf bifurcation of the
E;(x",y™) where the parameter c; varies ina fixed E,(x*,y*) if all parameter of model (3)
small neighborhood of c5. Moreover, if 8, > vary in a small neighborhood of As,.
O(resp. B, < 0), then the periodic-2 point From Lemma 2.7, has shown that E,(x*,y*)
that bifurcation from £, (x", y*) are stable is non-hyperbolic whene csM* = N*. To study
(resp. unstable). Hopf bifurcation of model (3) at fixed point
And condition (iii) of Lemma (2.7), we can get E;(x",y") in a small neighborhood of 4.
that the eigenvalue A, , of J(E,) are pair of Taking ~ parameter  (cq,¢Cp,C3,C4,C5) =
conjugate complex numbere. Whene the (€11, €21, €31, Ca1, C51) € A3,
parameter of model (3) are located in the
Yn
Xny1 = Xn + C51X (1 —Xp — )
LT T e T+ X)) (A + 1)) (14)
Ynet = Y + Cs1 ( C31%n —c )
mLTIR T\ o) (A F cnyn)

Give a perturbation ¢5 at cs5,, the model (14) is defined by

_ Yn
Xn41 = Xp + (€31 + C5)x (1—x - )
m " " "+ ) (X F 1) (15)
_ C31Xn
=y, + (51 +C ( —-C )
yn+1 yn ( 51 S)yn (1 +C11xn)(1 +C21yn) 41
Moving E,(x*, y*) to the origin, let u,, = x,, — x*, v, = y,, — ¥*. Furthere expanding Eq. (15) a Taylor
series at (u,, v,) = (0,0) to the second order, have
Upi1 = Q1alUn + Ao Vp + A31UA + Ag1UnVy + 5105 + a1 UAV, + A71UnVE + O(Jup| + |v)),2
— 2 2 2 2 3 (16)
Upt1 = bllun + b2117n + b31un + b41unvn + bSlvn + b61unvn + b71unvn + 0(|un| + |Un|) ’
where
* * %k %2 *2_ x %2 2
a1 =1+ c59 — 2¢51% N 51y + 2¢11C51X*Y* + C1C51Y" " — 3cf1051x YT — 20116516517 y
— c31c51Y",
* %2 * % %3 *2 % 2 P
Az1 = —C51X" + C11C51X" + 2C21C51X7Y" — €11C51X" — 22011021051x Y —3c51051X7Y",
Az = —2Cs1 + 2¢11651Y" — 6C121‘351X*3"* — 2€11C21C51Y" ,
Ay1 = —Cs1 + 2011C51%" + 2021051 Y" — 3cf1C51x" — 4Cy161C51 X"y — 3¢5 051Y",

A5y = 2021C51 X" — 2C11C21551X*2 - 6522105195*)’*:

Qg1 = 2C11C51 — 6CT1C51X" — 4C11C21C51Y",

Q71 = 2C51C51 — 4C11Ca1C51X" — 6C51C51 Y%,

b1y = C31C51Y" — 2€41C31C51X"Y" — C21C31C51y™% + 3012103105195*2}’* + 2C11021C31051X*}’*2
+ 3131051 Y" )

by1 =1+ c31651x" — C11031(351X*2 — 2051C31C51X" Y + ¢y 03105, X7 + 2011C21C31C51X*2y*
+3¢31C31C51 X"y — C41Cs1,

bay = —211C31C51Y" + 6€31C31C51X"Y* + 2011 €21 €151y,

ba1 = €31C51 — 2€11€31C51 X" — 2€21€31C51Y" + 3C121C31‘351X*2 + 4€11€21€31C51X7Y"
+3c316316517 ",

2
bsy = —2¢31¢31C51 X" + 301102103105135* + 60310316517y,
b1 = —2¢11€31C51 + 6C11631C51 %" + 4C115221C31C51y*'
* *
b71 = —2€31C31C51 + 4€11C21C31C51 X" + 6C1C31C51Y7, _
The characteristic equation associated with the linearization of Eq. (16) at (u,, v,) = (0,0) is
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A%+ p(Cs)A+q(é) =0 (17) d|A1,2(Cs)|

dCzS

N*
IC_5=0 = _? * 0.
where
p(Cs) = =2+ (Cs5 + c51)N”
q(Cs) =1 —(Cs + ¢51)N* + (Cs5 + c51)°M”

Furthermore, the condition A}, # 1 (n =
1,2,3,4) imply p(0) = —2,0,1,2. Not that N* <
2VM* means (p(0))? <4 and then p(0) #

Whe_ne Cs = 0, 4,,4, are roots cqmplex —2,2. We show that p(0) # 0,1 and we get
conjugate of characteristic equation (17) are p(0) = —2 + N*cgy # 0,1. Then N¥cg; # 2,3
_ p(@) +1y/49(C5) — p2(Gs) and thus
12— 2 ’ cs1x* +c51(1—x*) (621641(1 +cx%) — 1 j—llci*x*) * 2,3 (18)

Since |41,2(Cs)| = /q(Cs). From |4, ,(C5)| = Therefore, whene ¢ =0 and (18) hold, the
1, whene ¢5 = 0 we have q(0) =1 —N"c5; + eigenvalue 4, , do not lie at the point where the
M*c¢ = 1. unit circle intersect the coordinate axes.

Hence cs M* = N*. Therefore Let

1 cy1x”
a =Re(A)=1- 5 Cs1 [X* + (1 —x") (C21C41(1 +c11x") — —)].

1+ cqqx*
1 s
ﬁ = Im(ﬁ,llz) = ECSI 4‘M* - N*z,

Using the translation Eq. (16) we have
(un) =T (%n) = (0 1) ("En> {in+1 = ain - .Byn + ¢2(5Zn' f’n): (19)
Un Yn B a)\In ns1 = BXn + aFy + P2 (X, In),

where T ia an invertible matrix, can be written where
L 1 - o . 5 -
b2 (Xn, In) = E [(b31 — aaz1) i + (bas — @a41) T (BXn + aFy) + (bsy — aas,)(Bx, + aiy,)?
+ (be1 — aag1) i (BXy + aFy) + (b7 — €a71)Ju (BZXn + ayn)?] + 0(1%, | + [7,D*,

Yo (Xn, In) = a31571$~+ a4~137n(:85in + ajn) ‘i‘ a51([):xn + ayn)z + a61571% (BXn + ady)
q + a71yn(ﬁxn + ayn)z + 0(|xn| + |yn|)4'
an

$235 = 2B(bsy — aasy), ¢2,z3~, = (by1 — @ay) + 2a(bs; — aas,), ¢2f9z37 = 2B(by;1 — aazy),
b255 = %[2(b31 — aaz;) + 2a(byy — aayy) + 2a*(bs; — aas;)], $azp5 =0,
b2z55 = 2(be1 — a61) + 4(b71 — A7), Pr555 = %[66{(1)61 — aagy) + 6a*(byy — aasp)],
Va2gy = B?asy, V25 = Basr + 2aBasy, Yog; = 2a31 + 2aa,, + 20%asy, Pazgy =0,
Vozyy = 2Bas1 +4afazy, Yoz = 2B%az, V2555 = 6@a61 + 6a’ay,

The quantity a* is not be zero [24], in order for the Eq. (19) to undergo Hopf bifurcation.

a’ = Re %Em‘zo] - % 1§111% = |$021 + Re(A821),
where
$20 = %[‘1’2;@2 = Pagy t 2agy F iz ~ Vagy — 20255)]
$o2 = %[‘f’zﬁ = Pagy + Wagy ¥ W2ge ~Vagy ¥ 20255,
£ = %[qu + gy T i(Wags + 20245)],
£y = 11_6 [P255z T P2zpy T V2gey T i(W2555 — V2355 — P2zzp — V2y55))

Finally, as a result of the above analysis and result.
theorem 3.5.2 in [24] we obtain the followin
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Theorem 3.2 Whene the parameter ¢ change
in a small neighborhood of the cs;, the model
(3) undergo Hopf bifurcation at E, (x*, y™) if the
condition (19) hold a* = 0. Furthermore, if
a* < 0 (or a* > 0) an attracting (or repelling)
invariant closed curve bifurcation at E, (x*, y*).

4. Numerical simulation

In this section, to demonstrate dynamical
behavior of the model (3) by giving some
numerical evidence and the bifurcation
diagram, phase potraites were used to illustrate

(a)

TJPS

the above analytical result and explain new
dynamical behavior by using numerical
simulations. We consider the parameter values,
we have the following cases

For case 1, taking parameter ¢; = 0.35,¢, =
0.52,¢c3 = 0.15,¢c4 = 0.32 and c¢5 = 2 it shows
that in Lemma (2.4) E;(1,0) is non-hyperbolic
for ¢ =2. From Figure 1, is verifies
Proposition (2.5), whene c; = 2 with multiplies
A = 1,1, = 0.5822222222 and
(c1.€3,C3,€4,¢5) ER. S0 E;(1,0) which is
attracting.

(b)

Figure 1: The diagram for fixed point E; of model (3) with intial value is (0.9,0.7). (a) attracting

whene c¢5 = 2, (b) time series of (a).

For case 2, taking parameter ¢; = 0.35,¢, = 0.52,¢3 = 0.15 and ¢, = 0.12 from Lemma (2.4), we
see that stability fixed point E; (1,0) of the model (3) happenes cs < 2 and loses it is stability at c5 = 2
and periodic doubling bifurcation for ¢ > 2, it will be a chaotic set when increasing of cs. The phase
portraits which are related Figure 2, are given in Figure 3. For c5 € [2,2.56], there are periodic-2,4,8

and 16. When ¢ = 2.57,2.58
Are chaotic set.

01 DX 03 04 DS D6 OF D0DE D9 1.0 10 1 12 14 14 1.6 17 1% 18 0 2.1 2.2 .3 X4 248 .6 27 2B I

Figure 2: The bifurcation diagram for fixed point E; of model (3) with the initial value is (0.9,0.7)

140


https://doi.org/10.25130/tjps.v28i5.1588

Tikrit Journal of Pure Science (2023) 28 (5): 129-146 I J I : ;

Doi: https://doi.org/10.25130/tjps.v28i5.1588

cc=23 o | =25 ¢ = 2.556
time series cg = 2.3 time series cs = 2.5 time series c5 = 2.556

7057= 2.568 7 time series c; = 2.568
Figure 3: Phase portraits of different values cs equivalent to figure 2
For case 3, taking parameter ¢; = 0.35,¢, = 0.52,¢3 = 0.15 and ¢, = 0.12, we know the model (3)

has only one positive fixed point F,(0.9505,0.16650). From Figure 5, if cg = 1.2 it shows that E, is
stable.
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(a) (b)
Figure 4: The stability for fixed point E, with the intial value is (1.2,2.3)

To confirm Lemma (2.6), a flip bifurcation from the fixed point E,(0.9505,0.16650) occurs at c; =
2.190277138 with multiplies A, = 0.6844514937,1, = —1 and (cy, ¢3, C3,C4,C5) =
(1.45,2.5,1.63,0.46,2.190277138) € A,.

According to bifurcation diagrams shown in Figure 5, we see that the fixed point E; is stable for ¢5 <
2.190277138 and loses its stability at the flip bifurcation c¢s = 2.190277138 and period doubling
phenomena lead to chaos for c; > 2.190277138. The phase portraits which are related Figure 5, are
given in Figure 6. For cs € [2.19027,2.744], there are period-2,4,8 and 16. Whene cs = 2.755,2.76
are chaotic set.

:
o "”H‘\
R M\IHHHHH

Figure 5: Bifurcation dlagram of model (3) (a) Blfurcatlon for prey, (b) bifurcation for predator
with ¢; = 0.35,¢, = 0.52,¢3 = 0.15and ¢, = 0.12, ¢c5 € [1.9,3.1] the initial value is (1.2,2.3).
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cs = 2.25 ' cs = 2.68 s = 2.74
_— _ - - __—-‘—
. -
cs = 2.7445 e =2747 cs = 2.755
Cg = 2.76

Figure 6: Phase portraits of different values c5 equivalent to figure 5

For case 4 taking parameter ¢; = 0.6,c, = 0.5,c3 = 2.2 and ¢, = 0.46 we know the model (3) has
only one positive fixed point E,(0.40762,0.16650). To confirm Lemma (2.7), a Hopf bifurcation
appears at fixed point E,(0.40762,0.16650) for cs = 2.4566. Also we have 1,1 = 0.4341614785 +
0.9008439802i and (¢4, ¢3, 3, ¢4, ¢5) = (0.6,0.5,2.2,0.46,2.4566) € As.

The bifurcation diagram shown in Figuers 7(a) and 7(c) has shown stability fixed point E, happens
for c5 < 2.4566 and loses its stability at ¢ = 2.4566 and an invariant circle appears if cg > 2.4566.
From Figuers 7, there are period-doubling phenomena. Figures 7(b) and 7(d) is local amplification
corresponding to (a) and (c).
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Figure 7: Bifurcation diagram of model (3). (a) Hopf bifurcation for prey, (b) local amplification

corresponding to (a). (c) Hopf bifurcation for predator, (d) local amplification corresponding to (c) for
€ [2.1,3.1], the initial value is (0.5,0.5).

¢ = 2.475 ¢ = 2485 ' = 2756

ce = 2.7566 cq = 2.84 =293
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¢s = 2.945

n
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cs = 2.98

s = 2.99

s = 3.08

Figure 8: Phase portraits of different values c5 equivalent to figure 7

The phase portraits which are related Figure 7,
are given in Figure 8, for different value c5 are
explained in Figure 8, it illustrate that of smooth
invariant circle how it bifurcate from stable
fixed point E,(0.40762,0.16650). whene cg >
2.4566 appears a circle curve and radius
becomes larger whene cs is increases. whene cg
grows the circle disappears occurs suddenly and
period-5,10,20 and 35 orbits appear, for
example at cg = 2.48,2.93 and it’s chaotic
whene ¢; = 2.98,3.08.

5 Conclusion

Our goals investigated complex dynamical
behavior of model (3) in the closed first
quadrant RZ. Be sufficient condition for the flip
bifucation and Hopf bifurcation at unique
positive fixed point by using center manifold
theorem and bifurcation theory if cs varies of
the sets A; or A, and A;. Numerical simulation
displays unexpected behavior through flip
bifurcation which includes of period-2,4,8 and
16 orbits and through a Hopf bifurcation which
includes an invariant cycle, of period-5,10,20
and 35 orbits and chaotic sets.
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