Synthesis, Characterization, and Evaluation of the biological activity of novel Oxazepine compounds derived from monocarboxylic acid.
Main Article Content
Abstract
Abstract
In this study, novel compounds were synthesized from the ibuprofen nucleus, specifically 2-[4-(2-methylpropyl)phenyl]propanoic acid. The synthesis involved two main reactions: halogenation using bromine (1) Then, the esterification (2) and reaction of the resulting ester with hydrazine hydrate were carried out to prepare the hydrazide compounds. (3). By employing these reactions, a series of new hydrazone compounds (4-6) were successfully synthesized through a condensation reaction between substituted aromatic carbonyl compounds and hydrazine derivatives.
Furthermore, the hydrazone derivatives underwent a cycloaddition reaction with maleic anhydride, resulting in the production of 1,3-oxazepine compounds (7-9). The structural formula of the synthesized compounds was determined using analytical techniques such as Fourier Transformed Infra-Red Spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy (1H-NMR, 13C-NMR), and thin layer chromatography (TLC). These techniques were employed to confirm the occurrence of the reactions and the formation of the desired products.
The results of the analysis validated the structural structures of the prepared compounds, indicating the successful synthesis of the intended compounds.
Additionally, the biological activity of all oxazepine derivatives was evaluated using the diffusion plate method. The antibacterial activity of the newly synthesized compounds was specifically assessed. This assessment provides valuable information regarding the potential antimicrobial properties of the compounds.
In summary, this research focused on synthesizing new compounds derived from the ibuprofen nucleus and investigating their structural characteristics and biological activities, particularly their antibacterial properties.
في هذه الدراسة تحضيرمركبات جديدة من نواة الايبوبروفين، وتحديداً حمض 2-[4-(2-ميثيلبروبيل)فينيل]بروبانويك. تضمنت عملية التحضير تفاعلين رئيسيين: الهلجنة باستخدام البروم (1) ومن ثم الاسترة ومفاعلة الاستر الناتج مع الهيدرازين المائي لتحضير الهيدرازيد (3) (2). باستخدام هذين التفاعلين، تم تحضير سلسلة من مركبات الهيدرازون الجديدة (4-6) من خلال تفاعل التكثيف بين مشتقات الكاربونيل الاروماتية المعوضة ومشتقات الهيدرازين.
بالإضافة إلى ذلك، خضعت مشتقات الهيدرازون لتفاعل الاضافة الحلقية مع أنهيدريد الماليك، لتكوين مركبات الأوكسازيبين 1،3 (7-9). تم تشخيص الصيغة الكيميائية للمركبات المحضرة باستخدام تقنيات طيفية مثل طيف الأشعة تحت الحمراء (FTIR) والرنين النووي المغناطيسي (1H-NMR، 13C-NMR) وتقنية الكروماتوغرافيا الطبقية الرقيقة (TLC). تم استخدام هذه التقنيات لتأكيد حدوث التفاعلات وتكوين النواتج المطلوبة.
أكدت نتائج التحليل صحة التراكيب الكيميائية للمركبات المحضرة، مما يشير إلى نجاح عملية تحضير المركبات الكيميائية .
بالإضافة إلى ذلك، تم تقييم الفعالية البايلوجية لجميع مشتقات الأوكسازيبين باستخدام طريقة لوحة الانتشار. تم تحديد النشاط المضاد للبكتيريا للمركبات المحضرة. توفر هذه التقييمات معلومات قيمة بشأن الخصائص المضادة للميكروبات المحتملة للمركبات.
باختصار، ركزت هذه الدراسة على تحضير مركبات جديدة مشتقة من نواة الايبوبروفين واستكشاف خصائصها البنائية والنشاطات البيولوجية، وبخاصة خصائصها المضادة للبكتيريا.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] McNeely, W., & Goa, K. L. (1999). Diclofenac-potassium in migraine: a review. Drugs, 57, 991-1003.
[2] Andini, S., Bolognese, A., Formisano, D., Manfra, M., Montagnaro, F., & Santoro, L. (2012). Mechanochemistry of ibuprofen pharmaceutical. Chemosphere, 88(5), 548-553.
[3] Gonzalez-Rey, M., & Bebianno, M. J. (2011). Non-steroidal anti-inflammatory drug (NSAID) ibuprofen distresses antioxidant defense system in mussel Mytilus galloprovincialis gills. Aquatic toxicology, 105(3-4), 264-269.
[4] Rao, P., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of pharmacy & pharmaceutical sciences, 11(2), 81s-110s.
[5] Janz, J. M., & Farrens, D. L. (2003). Assessing structural elements that influence Schiff base stability: mutants E113Q and D190N destabilize rhodopsin through different mechanisms. Vision research, 43(28), 2991-3002.
[6] Chohan, Z. H., Hernandes, M. Z., Sensato, F. R., Moreira, D. R. M., Alves Pereira, V. R., Neves, J. K. D. A. L., ... & Lima Leite, A. C. (2014). Sulfonamide–metal complexes endowed with potent anti-Trypanosoma cruzi activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(2), 230-236.
[7] Melnikova, I. (2005). Future of COX2 inhibitors. Nat Rev Drug Discov, 4(6), 453-4.
[8] Jayashankar, B., Rai, K. L., Baskaran, N., & Sathish, H. S. (2009). Synthesis and pharmacological evaluation of 1, 3, 4-oxadiazole bearing bis (heterocycle) derivatives as anti-inflammatory and
analgesic agents. European Journal of Medicinal Chemistry, 44(10), 3898-3902.
[9] Manjunatha, K., Poojary, B., Lobo, P. L., Fernandes, J., & Kumari, N. S. (2010). Synthesis and biological evaluation of some 1, 3, 4-oxadiazole derivatives. European journal of medicinal chemistry, 45(11), 5225-5233.
[10] Bunnett. J. F. &Rauhut. M. M. (1958). Org. Synth. , 38, 11. DOI: 10.15227/orgsyn.038.0011 [11] Wang, W., Yang, X., Dai, R., Yan, Z., Wei, J., Dou, X., ... & Jiao, N. (2022). Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. Journal of the American Chemical Society, 144(29), 13415-13425.
[12] Al-Jubori, H. M. S., & Fandi Al-Mathkuri, T. S. (2022). Synthesis, Characterization, and biological activity of some Heterocyclic compounds that derived from Ibuprofen. Egyptian Journal of Chemistry, 65(11), 795-802.
[13] Kh Ahmad, A., & R Butti, L. (2013). Synthesis of some azetidonone and 1, 3-oxazepine deritives from thymol. Journal of Education and Science, 26(4), 40-46.
[14] A Kherallah, B. (2014). Synthesis and Identification of some 1, 3-oxazepine derivatives containing p-methoxy phenyl and studying their antibacterial activity. karbala journal of pharmaceutical sciences, 5(7), 31-41.
[15] Jirjees, I. Design and characterization of oxazepine new drivaives. International Journal of Health Sciences, (II), 7380-7387.
[16] Allamy, A. K. N., & Mejbel, S. A. (2022). Preparation, characterization and biological activity of some new seven-membered heterocyclic compounds. World Journal of Advanced Research and Reviews, 15(1), 662-678. [17] Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42.
[18] Brooks, G. F., Carroll, K. C., Butel, J. S., Morse, S. A., & Mietzner, T. A. (2014). Microbiologia Médica de Jawetz, Melnick & Adelberg-26 (2 edicion). AMGH Editora. [19] Banoon, S., Ali, Z., & Salih, T. (2020). Antibiotic resistance profile of local thermophilic Bacillus licheniformis isolated from Maysan province soil. Comunicata Scientiae, 11, e3291-e3291.
[20] Evstigneev, M. P. (2013). Physicochemical mechanisms of synergistic biological action of combinations of aromatic heterocyclic compounds. Organic Chemistry International, 2013.