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1. Introduction

Optimization is an important field of applied
mathematics that searches for optimal values,
whether maximizers or minimizers, for a specific
function. Global optimization can be used to model
many real-life scientific problems, for example,
engineering,  chemical,  physics,  astronomy,
agriculture, economics, information technology,
geography, etc. scientific problems [1, 9]. The
formulation of global optimization problems as an
objective function varies from one problem to
another. If the objective function is convex, then the
function is simple, and we only need to find the
solution using local optimization or local search
through one of the local search methods, but if the
objective function is non-convex, then the function is
complex, and we need to use global optimization
methods to find the solution, which searches the
entire domain (rather than a specific region) [1].

The general mathematical description of the global
optimization problem can be formatted as follows:
(P) minyeq f(x) ...(1)

where 2 c R™ is the domain area of the objective
function f. Depending on the problem type, global
optimization problems are divided into two main
types, constrained problems (which use part of the
domain 0 as a search region) and unconstrained
problems (which use the whole domain (2 as a search
region for the objective function ). In this study,
global optimization of unconstrained types is used as
a search area. Many important studies in different
fields are modeled as global optimization, [1-14].
This paper presents two algorithms to solve
unconstrained global optimization problems. The first
algorithm is called the directional search algorithm
(DSA), which solves optimization problems by
transforming a multidimensional problem into
partitions of a one-dimensional problem, finding the
global minimizer of the one-dimensional problem,
and then using it to find the multidimensional
problem. The second algorithm is called the
multidimensional search algorithm (MSA), which
solves optimization problems by using the same
auxiliary function to find the global minimizer of the
same multidimensional problem without partitioning
it, and then comparing the two algorithms to show
which one is better at finding the solutions. This
study is organized as follows: The second part
addresses the inclusion of some definitions and
assumptions necessary to describe the type of
problem. The third part presents the two algorithms to
solve the unconstrained global optimization problem.
Part four summarizes the numerical results of the
proposed algorithms. Finally, in part five, conclusions
are presented.

2. Preliminaries

The following assumptions need to be defined.
Assumption 1. The function f(x) - o« as ||x]| =
oo in other words, the function f is coercive.
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Assuming 1, it is assumed that there exists a box 0
that is closed and bounded and contains all the
minimizers of f.

Assumption 2. It is necessary to have a finite number
of local minimizers for the function f, the set 2, and
0, are defined by 2, = {x € 2 : f(x) = f(x]), x #
xj‘}and D, ={xe|f(x) < f(xj*) X # xj'}.

So, we provide the definitions:

Definition 1 [10]: Let 2 c R™, a point x* € 2 is
called a global minimizer of f if f(x*) < f(x) for
all x € 2, and x™ is referred to as a global maximizer
of fif f(x*) = f(x) forall x € N.

Definition 2 [10]: A direction d € R™ s referred to as
a descent direction for a given point x € R™, if there
exists § > 0 such that

f(x+ad) < f(x), forall a€(0,6)

Definition 3 [10]: Suppose that x; is any local
minimizer of the function f(x). Then, the set
B(xj) < 2 is commonly referred to as a basin of f at
point x; if there is a local minimization method that
starts from any point B(x;) finds local minimizer x;
. So, there exists a higher basin of x;if any minimizer

xfy1 of f(x) hold the f(xj,) = f(x), and if
f(xj41) < f(x}) that means lower basin.

3. Theoretical Part

In this part, we suggest two algorithms with two
different ideas to find the global optimal of the same
problem. The following auxiliary function, taken
from [1], was used to obtain a better solution in both
algorithms:

Fgu(xx)) = Ag(x,x) + ¥(x] , 1) , ... (2)

where

Ap(e, ) = (F) = £(x) )T ) + £ (%)),
It p) = 1/(1 + e(t/ﬁ)>, t=f(x)—f(x).B>0

and

ll)(xj*,u) =1/u+ ||x - X ||2, O<u<l

3.1 Directional Search Algorithm (DSA)

In this algorithm, we use any initial point x, € , and
then from this point, and by dividing a
multidimensional problem based on directions into
one-dimensional partitions, we can use the auxiliary
function Fz ,(x,x;) to find the global minimizer for
each partition. that is applied only to the one-
dimensional problem, to explain that:

Let x, any initial point belong to the search area
(domain Q c R™), d; is a directionand j = 1,2, ..., n,
we can use the line

g(a) = xg+ ad]-,

to construct one-dimensional function

G(a) = f(xo + ad)),

then

min, G(a) = f(xo + ad;) ....(3)
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To find the a*from equation (3), we use the auxiliary
function in (2) after transferring it to aone-
dimensional function as follows:

FB,#(a, aj‘) = Aﬁ(a, a}) +Y(aj,p) .....(4)

That is the global minimizer ; at direction d; give to
a result of a one-dimensional minimization problem.
Then, find the point x; corresponding to point
ajusing x; = x, + ajd;, and use the point x; as a
starting point to get the corresponding local
minimizer x; of f(x) by minimize the objective
function f(x). Finally, we get all minimizers x;from
all directions d;, j=12,..,n, and the global
minimizer x* of f(x) is obtained by comparing
function values at these local minimizers. We give
the steps of the DSA algorithm as follows:

Stepl. Locate j = 0, § = 0.01, § = 0.1, choose
appropriate 0 < p < 1,n the number of directions
dj forj =1,2,..,n, select an initial starting point
X, € Q and locate boundary of Q.

Step2. Construct the function G(a) = f(x, +
ad;) in a one-dimensional function.

Step3. (1) Identify the local minimum af of the
function G (@) from minimizing any initial starting
point a,. and take r = —1.

(2) Construct the auxiliary function Fy , (a, a/) at af.
(3) Begin from @y = af +ré to find a minimizer
ar of g, (a, af).

(4) If ar in Q go to (5) otherwise goto (7).

(5) Begin from ap minimize G(a) to obtain lower
minimizer a{** and go to

(6) If a/** inQtake af = a/** go to (2).

@) If r=1stop the algorithm, take a; =
aj** otherwise take 7 = 1 go to (3).

Step4. Compute the point x; from the equation
X; = xo + ajd;, and find the local minimizer x; of
the function f(x) by using x; as initial point.

Step5. If j < n, generate a new search direction
dj,j =j+ 1, and go to Step 2 otherwise go to Step 6.
Step6. Locate the global minimizer value of the
objective function f(x) as
x* =min f(x1), f(x2), ..., f(xn )}

3.2 Multidimensional Search Algorithm (MSA)

In this algorithm, the global minimizer of the
multidimensional objective function is identified
without partitioning it in the following manner:
Firstly, we select any point x, from the domain Q to
locate the minimizer x; of the objective function by
employing any local search method. Subsequently,
we construct the auxiliary function Fg,(x,x;) to
obtain another local minimizer x;,, that is lower
than x; and utilize the new point to construct the
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auxiliary function Fﬁ_#(x,x;:r1 again at xj,; to
obtain another lower minimizer. Finally, by repeating
the aforementioned process, the global minimizer x*
is identified. We summarize the steps of the MSA
algorithm as follows:

Stepl. Setj = 0, = 0.01, § =0.01 as a step,
give 0 < u<1,n the number of directions
dj for j=1,2,..,n, and choose any starting point
Xy € L.

Step2. Minimize the function f(x) by utilizing the
initial point x,, to find a current local minimizer x; .
Step3. Construct the function Fp,at the local
minimizer x;

Fou(% %) = Ag(x, %) + (¢, ).

Step4. If j<n , set x = x; + &d; proceed to
step 5; if not, proceed to Step 6.

Step5. Begin by locating a minimizer x; of
Fg (%, x}) by using the point x and if x; € Q then set
Xo=xp ,j = j+ 1 and go to Step 2; otherwise
j = j + 1 goto Step 4.

Step6. Chose x; as a global minimizer of f(x) and
stop the algorithm.

4. Numerical Experiments

In this part, we applied the proposed algorithms to a
set of 21 common test functions, taken from [15],
with different dimensions ranging from simple to
difficult, as shown in Table 1, to illustrate the
strengths and weaknesses of these algorithms. For
each problem, ten different starting points are used.
The percentage of each algorithm reaching the
optimal value is shown, as well as the calculation of
the time taken and the evaluation of the auxiliary
function and the objective function for each
algorithm. All results were calculated on a computer
with the following specifications: Intel(R) Core(TM)
(CPU i7-3687U, 2.60 GHz) on MATLAB version
R2016a. The symbols used in the tables can be
explained as follows:

+  Sp: The symbol of the objective functions used in
the test

n: Dimensions of different test functions.

Fg: Average number of functions evaluation for
auxiliary function and the objective function over ten
different points

Time: determine the average of 10 runs' total
running time in seconds.

Fy: The average of objective function values
found from ten attempts.

Fpg: in ten attempts, the best function value.

Rg: The number of successful attempts to reach
the optimal solution from ten starting points.
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Function Function name Dimension n | Optimum value Search area
No.
Py Two-dimensional function ¢ = 0.05 2 zero [—cc]?c=
P, Two-dimensional function ¢ = 0.2 2 zero [-c,c]?c=3
Ps Two-dimensional function ¢ = 0.5 2 zero [—c,cl%c=
P, Three-hump back camel function 2 zero [-c,c]?c=3
Ps Six-hump back camel function 2 —1.0316 [-¢,c]%c=3
Ps Treccani function 2 zero [-¢c,c]%c=3
P, Goldstein and Price function 2 3.000 —c,c]?c=
Pg Two-dimensional Shubert function 2 —186.73091 —c,c]%c=10
Po Rastrigin function 2 —2.000 —c,c]?c=
P1o (RC)Branin function 2 0.3979 [-5,10] x [10,15]
Py (S455)Shekel function 4 —10.1532 [0,10]*
P, (S47)Shekel function 4 —10.4029 [0,10]*
Pis (S4.10)Shekel function 4 —10.5364 [0,10]*
P, (L,)Levy function 2 zero [—c,c]?c=10
Pis (Lz)Levy function 3 zero [c,c]3c=10
Pis (Ls)Levy function 5 zero [—c,c]5c=10
P17 (L,)Levy function 7 zero [—c,c]7,¢c=10
Pis (L.o)Levy function 10 zero [—c,c]¥,c=10
P1o (Loo)Levy function 20 zero [—c,c]1?% ¢ =10
P, (Lso)Levy function 30 zero [—¢,c]®c=10
P, (Lso)Levy function 50 zero [—c,c]%%c=10

Tables 2 and 3 show the results obtained by the DSA code, problem dimension, function evaluation,

and MSA algorithms on test problems P,—P,;. These
Tables contain seven columns as follows: problem

Table 2: Numerical results of the algorithm DSA.

average of objective function, best function value,
total running time and successful attempts.

Sg | n | Fg Fy Fp Time Rg

P, | 2 | 108 | 2-0985e-15 | 3.9321e-17 | 0.0961 | 10/10
P, | 2 | 112 | 1.4907e-14 | 1.4123e-18 | 0.2938 | 10/10
P;s | 2 | 268 | 2.0892e-14 | 1.9526e-15 | 0.1001 | 10/10
P, | 2 | 286 | 4.1917e-12 | 1.2678e-16 | 0.0723 | 10/10
Ps | 2 | 144 -1.0316 -1.0316 0.0939 | 10/10
Ps | 2 | 198 | 2.7807e-13 | 1.545%-17 | 0.0156 | 10/10
P; | 2 | 188 3.0000 3.0000 0.0893 | 10/10
Ps | 2 | 352 | -186.7309 | -186.7309 | 0.0815 | 10/10
Ps | 2 | 336 | 3.3765e-12 | 2.1316e-14 | 0.1265 | 8/10
Pol| 2 | 144 0.3979 0.3979 0.0101 | 10/10
Py | 4 | 468 | -10.1532 -10.1532 | 0.1597 | 9/10
Po| 4 | 312 | -10.4029 -10.4029 | 0.2785 | 10/10
Pis| 4 | 364 | -10.5321 -10.5321 | 0.01323 | 10/10
Py | 2 | 204 | 3.4651e-15 | 5.5907e-17 | 0.0761 | 10/10
Pis | 3 | 286 | 5.3208e-15 | 1.4839%-16 | 0.0134 | 9/10
Pie| 5 | 626 | 2.2361e-12 | 4.5660e-15 | 0.0154 | 8/10
P17 | 7 | 728 | 1.5423e-14 | 2.1645e-16 | 0.0179 | 8/10
Pig | 10 | 788 | 3.9034e-13 | 4.6800e-16 | 0.3213 | 7/10
Pig | 20 | 1490 | 4.7612e-14 | 1.9578e-15 | 0.2745 | 7/10
Py | 30 | 2480 | 1.5541e-13 | 1.9207e-16 | 0.3123 | 7/10
P, | 50 | 9520 | 2.4092e-13 | 4.1172e-15 | 0.5545 | 7/10
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Table 3: Numerical results of the algorithm MSA.

Sg | n Fg Fy Fp Time Rg

P, | 2 291 | 1.9542e-10 | 5.7244e-16 | 0.2563 | 9/10

P, | 2 | 315 | 2.2610e-13 | 1.2548e-14 | 0.6049 | 10/10

Ps | 2 288 | 2.2796e-13 | 5.7321e-15 | 0.2113 | 8/10

P, | 2 | 306 | 3.3918e-12 | 2.2390e-16 | 0.1015 | 10/10

Ps | 2 135 -1.0316 -1.0316 | 0.1222 | 10/10

Ps | 2 240 | 4.8822e-10 | 5.1253e-16 | 0.0367 | 10/10

P, | 2 | 309 3.0000 3.0000 0.1212 | 8/10

Ps | 2 273 | -186.7309 | -186.7309 | 0.1609 | 9/10

Ps | 2 | 510 | 5.4921e-12 | 2.1316e-14 | 0.3910 | 6/10

Py | 2 243 0.3979 0.3979 0.0226 | 10/10

Py | 4 | 660 -10.1532 -10.1532 | 0.3048 | 6/10

P, | 4 | 545 -10.4029 -10.4029 | 0.5099 | 6/10

Pis| 4 | 755 -10.5321 -10.5321 | 0.0278 | 6/10

Py | 2 669 | 5.6126e-14 | 2.3476e-16 | 0.0350 | 8/10

Pis | 3 625 | 6.9832e-13 | 4.5909e-16 | 0.0227 | 7/10

Pig | 5 | 1422 | 45783e-13 | 8.6884e-14 | 0.0331 | 6/10

Piz | 7 | 1936 | 2.1327e-10 | 6.9033e-16 | 0.0388 | 6/10

Pig | 10 | 2343 | 1.7542e-11 | 4.2329-14 | 0.7221 | 6/10

Py | 20 | 9114 | 3.6532e-13 | 4.5555e-15 | 0.5435 | 6/10

Py | 30 | 13391 | 5.4447e-12 | 3.4219e-14 | 0.4026 | 6/10

P,y | 50 | 48450 | 5.8142e-13 | 9.8943e-15 | 1.0644 | 7/10

Table 4: Comparison of numerical results between the algorithm DSA and the algorithm MSA
Algorithm DSA. Algorithm MSA
Sg | n Fg Fg Time Rg Fg Fgp Time Rg
P, | 2 | 108 | 2.0930e-30 | 0.2563 | 10/10 291 | 5.7244e-16 | 0.2563 | 9/10
P, | 2 | 112 | 5.9220e-32 | 0.6049 | 10/10 315 | 1.2548e-14 | 0.6049 | 10/10
P; | 2 | 268 | 1.9526e-15 | 0.2113 | 10/10 288 | 5.7321e-15 | 0.2113 | 8/10
P, | 2 | 286 | 1.2678e-16 | 0.1015 | 10/10 306 | 2.2390e-16 | 0.1015 | 10/10
Ps | 2 | 144 -1.0316 0.1222 | 10/10 135 -1.0316 | 0.1222 | 10/10
Pe | 2 | 198 | 1.5459e-17 | 0.0367 | 10/10 240 | 5.1253e-16 | 0.0367 | 10/10
P, | 2 | 188 3.0000 0.1212 | 10/10 309 3.0000 0.1212 | 8/10
Pg | 2 | 352 | -186.7309 | 0.1609 | 10/10 273 | -186.7309 | 0.1609 | 9/10
Pe | 2 | 336 | 2.1316e-14 | 0.3910 | 8/10 510 | 2.1316e-14 | 0.3910 | 6/10
Po| 2 | 144 0.3979 0.0226 | 10/10 243 0.3979 0.0226 | 10/10
Py | 4 | 468 -10.1532 | 0.3048 | 9/10 660 -10.1532 | 0.3048 | 6/10
Py, | 4 | 312 -10.4029 | 0.5099 | 10/10 545 -10.4029 | 0.5099 | 6/10
P | 4 | 364 -10.5321 | 0.0278 | 10/10 755 -10.5321 | 0.0278 | 6/10
Py | 2 | 204 | 5.5907e-17 | 0.0350 | 10/10 669 | 2.3476e-16 | 0.0350 | 8/10
Pis | 3 | 286 | 1.4839%-16 | 0.0227 | 9/10 625 | 4.5909e-16 | 0.0227 | 7/10
Pig| 5 | 626 | 4.5660e-15 | 0.0331 | 8/10 1422 | 8.6884e-14 | 0.0331 | 6/10
P17 | 7 | 728 | 2.1645e-16 | 0.0388 | 8/10 1936 | 6.9033e-16 | 0.0388 | 6/10
Pig | 10 | 788 | 4.6800e-16 | 0.7221 | 7/10 2343 | 4.2329-14 | 0.7221 | 6/10
Pig | 20 | 1490 | 1.9578e-15 | 0.5435 | 7/10 9114 | 4.5555e-15 | 0.5435 | 6/10
P,y | 30 | 2480 | 1.9207e-16 | 0.4026 | 7/10 13391 | 3.4219e-14 | 0.4026 | 6/10
P,; | 50 | 9520 | 4.1172e-15 | 1.0644 | 7/10 48450 | 9.8943e-15 | 1.0644 | 7/10
By comparing the results of algorithm DSA with (Fg). Likewise, in column (Fg), algorithm DSA has

algorithm MSA, we see the superiority of algorithm
DSA in all results due to dividing the multi-
dimension problem into parts of one-dimensional
problems, as algorithm DSA requires a lower
function evaluation than algorithm MSA for almost
all test problems, as can be seen clearly in the column

88

an advantage in reaching the global minimizer with
more effectiveness and accuracy than algorithm
MSA. As for the time spent calculating each problem,
algorithm DSA took much less time than algorithm
MSA to solve the same problem, as can be seen
clearly in column (Time), and finally in Column
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(Rs), the successful attempts to reach the global
minimizer for algorithm DSA were better than
algorithm MSA for all test problems. All comparison
results are shown in Table 4.

5. Conclusions

This paper introduces two algorithms, DSA and
MSA, to solve unconstrained global optimization
problems. The DSA algorithm operates by
transforming a multidimensional problem into a one-
dimensional problem. While the MSA algorithm
finds the global minimizer without dividing the
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