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ABSTRACT 

In this paper, we present two algorithms that are designed to 

solve unconstrained global optimization problems. The first 

algorithm is introduced for resolving unconstrained 

optimization problems by dividing a multidimensional 

problem into partitions of a one-dimensional problem and 

subsequently identifying a global minimizer for each partition 

by utilizing an auxiliary function and then using it to find the 

global minimizer of a multidimensional problem. In the 

second algorithm, the same auxiliary function is used to find a 

global minimizer of the same multidimensional problem 

without partitioning it. Finally, we apply these algorithms to 

common test problems and compare them to each other to 

show the efficiency of the algorithms. 

 

 

 الهظيفة المداعدة استخدامخهارزميتان لحل التحدين العالمي غير المقيد ب
 2و سعاد مدحت عبدالله 2عصام حيدر خليل, 1شهاب احمد ابراهيم

 العراق ، كركهك ، جامعة كركهك،  كمية عمهم الحاسهب وتكشهلهجيا السعمهمات،  قدم عمهم الحاسهب 1
 العراق ، جامعة كركهك ، كركهك ، كمية العمهم،  قدم الرياضيات 2
 

 الملخص
تم تقديم الخهارزمية الأولى لحل مذاكل التحدين غير السقيدة عن يفي هذا البحث، نقدم خهارزميتين لحل مذاكل التحدين العالسي غير السقيدة. 

ة ثم مداعد دالةمن خلال استخدام  قدملكل  عالسيسذكمة ذات بعد واحد ومن ثم تحديد السرغر الل قدامالسذكمة متعددة الأبعاد إلى أ قديمطريق ت
السداعدة لمعثهر عمى السُرغر  الدالةلمسذكمة متعددة الأبعاد . في الخهارزمية الثانية، يتم استخدام نفس  عالسياستخدامها لمعثهر عمى السرغر ال

بعزها البعض الاختبار الذائعة ومقارنتها ب كلاتهذه الخهارزميات عمى مذ نظبق. أخيرا، قديسهالشفس السذكمة متعددة الأبعاد دون ت عالسيال
 كفاءة الخهارزميتين. لإعهار
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1.  Introduction 
Optimization is an important field of applied 

mathematics that searches for optimal values, 

whether maximizers or minimizers, for a specific 

function. Global optimization can be used to model 

many real-life scientific problems, for example, 

engineering, chemical, physics, astronomy, 

agriculture, economics, information technology, 

geography, etc. scientific problems [1, 9]. The 

formulation of global optimization problems as an 

objective function varies from one problem to 

another. If the objective function is convex, then the 

function is simple, and we only need to find the 

solution using local optimization or local search 

through one of the local search methods, but if the 

objective function is non-convex, then the function is 

complex, and we need to use global optimization 

methods to find the solution, which searches the 

entire domain (rather than a specific region) [1]. 

The general mathematical description of the global 

optimization problem can be formatted as follows: 

                   …(1) 

where      is the domain area of the objective 

function  . Depending on the problem type, global 

optimization problems are divided into two main 

types, constrained problems (which use part of the 

domain   as a search region) and unconstrained 

problems (which use the whole domain   as a search 

region for the objective function ). In this study, 

global optimization of unconstrained types is used as 

a search area. Many important studies in different 

fields are modeled as global optimization, [1–14]. 

This paper presents two algorithms to solve 

unconstrained global optimization problems. The first 

algorithm is called the directional search algorithm 

(DSA), which solves optimization problems by 

transforming a multidimensional problem into 

partitions of a one-dimensional problem, finding the 

global minimizer of the one-dimensional problem, 

and then using it to find the multidimensional 

problem. The second algorithm is called the 

multidimensional search algorithm (MSA), which 

solves optimization problems by using the same 

auxiliary function to find the global minimizer of the 

same multidimensional problem without partitioning 

it, and then comparing the two algorithms to show 

which one is better at finding the solutions. This 

study is organized as follows: The second part 

addresses the inclusion of some definitions and 

assumptions necessary to describe the type of 

problem. The third part presents the two algorithms to 

solve the unconstrained global optimization problem. 

Part four summarizes the numerical results of the 

proposed algorithms. Finally, in part five, conclusions 

are presented.  

2.  Preliminaries 
The following assumptions need to be defined. 

 Assumption 1. The function         as ‖ ‖  
   in other words, the function   is coercive. 

Assuming 1, it is assumed that there exists a box    

that is closed and bounded and contains all the 

minimizers of  . 

Assumption 2. It is necessary to have a finite number 

of local minimizers for the function  , the set    and 

   are defined by    {           (  
 )   

  
  } and     {    |       (   

 )     
  . 

 So, we provide the definitions: 

Definition 1 [10]: Let     , a point      is 

called a global minimizer of   if              for 

all    , and     is referred to as a global maximizer 

of   if              for all      
Definition 2 [10]: A direction      s referred to as 

a descent direction for a given point     ,  if there 

exists        such that  

                                      
Definition 3 [10]: Suppose that   

  is any local 

minimizer of the function     . Then, the set 

    
     is commonly referred to as a basin of   at 

point   
   if there is a local minimization method that 

starts from any point     
    finds local minimizer    

  

. So,  there exists a higher basin of   
 if any minimizer  

    
  of      hold the  (    

 )   (  
 )   and if  

  (    
 )   (   

 )  that means lower basin.  

3. Theoretical Part 
In this part, we suggest two algorithms with two 

different ideas to find the global optimal of the same 

problem. The following auxiliary function, taken 

from [1], was used to obtain a better solution in both 

algorithms: 

    (    
 )    (    

 )      
      , … (2) 

where 

       
   (      (  

 ))         (  
 )   

        (   
(  ⁄ )

)          (  
 )⁄         

and 

 (  
    )     ‖    

  ‖
 
 ⁄          

3.1 Directional Search Algorithm (DSA) 

In this algorithm, we use any initial point     , and 

then from this point, and by dividing a 

multidimensional problem based on directions into 

one-dimensional partitions, we can use the auxiliary 

function     (    
 ) to find the global minimizer for 

each partition. that is applied only to the one-

dimensional problem, to explain that: 

Let     any initial point belong to the search area 

(domain      ,    is a direction and          , 

we can use the line  

             , 

to construct one-dimensional function 

                ,  

then 

                     ….(3) 
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To find the   from equation (3), we use the auxiliary 

function in (2) after transferring it to a one-

dimensional function as follows: 

    (    
 )    (    

 )      
      …..(4) 

That is the global minimizer   
  at direction    give to 

a result of a one-dimensional minimization problem. 

Then, find the point   
  corresponding to point 

  
 using   

       
   , and use the point   

  as a 

starting point to get the corresponding local 

minimizer   
  of      by minimize the objective 

function     . Finally, we get all minimizers   
 from 

all directions             , and the global 

minimizer    of      is obtained by comparing 

function values at these local minimizers. We give 

the steps of the DSA algorithm as follows: 

Step1.  Locate                    , choose 

appropriate              the number of directions 

                , select an initial starting point 

      and locate boundary of  . 

Step2. Construct the function             
     in a one-dimensional function.  

Step3. (1) Identify the local minimum   
  of the 

function      from minimizing any initial starting 

point   . and take     . 

(2) Construct the auxiliary function     (    
 )  at   

 . 

(3) Begin from        
       to find a minimizer 

   of     (    
 )  

(4) If    in   go to (5) otherwise goto (7). 

(5) Begin from    minimize       to obtain lower 

minimizer   
    and go to 

(6)  If   
     in   take   

  =   
    go to (2). 

(7)  If    stop the algorithm, take   
  

  
   ,otherwise take     go to (3). 

Step4. Compute the point   
  from the equation 

  
       

   , and find the local minimizer   
  of 

the function      by using   
  as initial point. 

Step5. If        , generate a new search direction  

        , and go to Step 2 otherwise go to Step 6. 

Step6. Locate the global minimizer value of the 

objective function      as 

           
       

           
    . 

3.2 Multidimensional Search Algorithm (MSA) 

In this algorithm, the global minimizer of the 

multidimensional objective function is identified 

without partitioning it in the following manner: 

Firstly, we select any point    from the domain   to 

locate the minimizer   
  of the objective function by 

employing any local search method. Subsequently, 

we construct the auxiliary function     (    
 ) to 

obtain another local minimizer     
   that is lower 

than   
   and utilize the new point to construct the 

auxiliary function     (      
 )  again at     

  to 

obtain another lower minimizer. Finally, by repeating 

the aforementioned process, the global minimizer    

is identified. We summarize the steps of the MSA 

algorithm as follows: 

Step1. Set                      as a step, 

give              the number of directions 

                , and choose any starting point 

     . 

Step2. Minimize the function      by utilizing the 

initial point   , to find a current local minimizer   
 . 

Step3. Construct the function      at the local 

minimizer   
  

    (    
 )    (    

 )      
     . 

Step4. If      , set       
        proceed to 

step 5; if not, proceed to Step 6. 

Step5. Begin by locating a minimizer    of 

    (    
 ) by using the point   and if      then set 

      ,           and go to Step 2; otherwise 

           go to Step 4. 

Step6. Chose   
  as a global minimizer of      and 

stop the algorithm. 

4. Numerical Experiments 
In this part, we applied the proposed algorithms to a 

set of 21 common test functions, taken from [15], 

with different dimensions ranging from simple to 

difficult, as shown in Table 1, to illustrate the 

strengths and weaknesses of these algorithms. For 

each problem, ten different starting points are used. 

The percentage of each algorithm reaching the 

optimal value is shown, as well as the calculation of 

the time taken and the evaluation of the auxiliary 

function and the objective function for each 

algorithm. All results were calculated on a computer 

with the following specifications: Intel(R) Core(TM) 

(CPU i7-3687U, 2.60 GHz) on MATLAB version 

R2016a. The symbols used in the tables can be 

explained as follows: 

•   : The symbol of the objective functions used in 

the test 

•  : Dimensions of different test functions. 

•   : Average number of functions evaluation for 

auxiliary function and the objective function over ten 

different points 

•     : determine the average of 10 runs' total 

running time in seconds. 

•   : The average of objective function values 

found from ten attempts. 

•   : in ten attempts, the best function value. 

•   : The number of successful attempts to reach 

the optimal solution from ten starting points. 
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Table 1: Test Problems 

Function 

No. 

Function name Dimension n Optimum value Search area 

P1 Two-dimensional function c = 0.05 2                   
P2 Two-dimensional function c = 0.2 2                   
P3 Two-dimensional function c = 0.5 2                   
P4 Three-hump back camel function 2                   
P5 Six-hump back camel function 2                      
P6 Treccani function 2                   
P7 Goldstein and Price function 2                    
P8 Two-dimensional Shubert function 2                          
P9 Rastrigin function 2                     
P10 (RC)Branin function 2                          
P11 (S4,5)Shekel function 4                  

P12 (S4,7)Shekel function 4                  

P13 (S4,10)Shekel function 4                  

P14 (L2)Levy function 2                    

P15 (L3)Levy function 3                    

P16 (L5)Levy function 5                    

P17 (L7)Levy function 7                    

P18 (L10)Levy function 10                     

P19 (L20)Levy function 20                     

P20 (L30)Levy function 30                     

P21 (L50)Levy function 50                     
 

Tables 2 and 3 show the results obtained by the DSA 

and MSA algorithms on test problems P1–P21. These 

Tables contain seven columns as follows: problem 

code, problem dimension, function evaluation, 

average of objective function, best function value, 

total running time and successful attempts. 
 

Table 2: Numerical results of the algorithm DSA. 

                      

P1 2 108 2-0985e-15 3.9321e-17 0.0961 10/10 

P2 2 112 1.4907e-14 1.4123e-18 0.2938 10/10 

P3 2 268 2.0892e-14 1.9526e-15 0.1001 10/10 

P4 2 286 4.1917e-12 1.2678e-16 0.0723 10/10 

P5 2 144 -1.0316 -1.0316 0.0939 10/10 

P6 2 198 2.7807e-13 1.5459e-17 0.0156 10/10 

P7 2 188 3.0000 3.0000 0.0893 10/10 

P8 2 352 -186.7309 -186.7309 0.0815 10/10 

P9 2 336 3.3765e-12 2.1316e-14 0.1265 8/10 

P10 2 144 0.3979 0.3979 0.0101 10/10 

P11 4 468 -10.1532 -10.1532 0.1597 9/10 

P12 4 312 -10.4029 -10.4029 0.2785 10/10 

P13 4 364 -10.5321 -10.5321 0.01323 10/10 

P14 2 204 3.4651e-15 5.5907e-17 0.0761 10/10 

P15 3 286 5.3208e-15 1.4839e-16 0.0134 9/10 

P16 5 626 2.2361e-12 4.5660e-15 0.0154 8/10 

P17 7 728 1.5423e-14 2.1645e-16 0.0179 8/10 

P18 10 788 3.9034e-13 4.6800e-16 0.3213 7/10 

P19 20 1490 4.7612e-14 1.9578e-15 0.2745 7/10 

P20 30 2480 1.5541e-13 1.9207e-16 0.3123 7/10 

P21 50 9520 2.4092e-13 4.1172e-15 0.5545 7/10 
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Table 3: Numerical results of the algorithm MSA. 

                      

P1 2 291 1.9542e-10 5.7244e-16 0.2563 9/10 

P2 2 315 2.2610e-13 1.2548e-14 0.6049 10/10 

P3 2 288 2.2796e-13 5.7321e-15 0.2113 8/10 

P4 2 306 3.3918e-12 2.2390e-16 0.1015 10/10 

P5 2 135 -1.0316 -1.0316 0.1222 10/10 

P6 2 240 4.8822e-10 5.1253e-16 0.0367 10/10 

P7 2 309 3.0000 3.0000 0.1212 8/10 

P8 2 273 -186.7309 -186.7309 0.1609 9/10 

P9 2 510 5.4921e-12 2.1316e-14 0.3910 6/10 

P10 2 243 0.3979 0.3979 0.0226 10/10 

P11 4 660 -10.1532 -10.1532 0.3048 6/10 

P12 4 545 -10.4029 -10.4029 0.5099 6/10 

P13 4 755 -10.5321 -10.5321 0.0278 6/10 

P14 2 669 5.6126e-14 2.3476e-16 0.0350 8/10 

P15 3 625 6.9832e-13 4.5909e-16 0.0227 7/10 

P16 5 1422 4.5783e-13 8.6884e-14 0.0331 6/10 

P17 7 1936 2.1327e-10 6.9033e-16 0.0388 6/10 

P18 10 2343 1.7542e-11 4.2329e-14 0.7221 6/10 

P19 20 9114 3.6532e-13 4.5555e-15 0.5435 6/10 

P20 30 13391 5.4447e-12 3.4219e-14 0.4026 6/10 

P21 50 48450 5.8142e-13 9.8943e-15 1.0644 7/10 
 

Table 4: Comparison of numerical results between the algorithm DSA and the algorithm MSA 

 Algorithm DSA.  Algorithm MSA 

                                  

P1 2 108 2.0930e-30 0.2563 10/10  291 5.7244e-16 0.2563 9/10 

P2 2 112 5.9220e-32 0.6049 10/10  315 1.2548e-14 0.6049 10/10 

P3 2 268 1.9526e-15 0.2113 10/10  288 5.7321e-15 0.2113 8/10 

P4 2 286 1.2678e-16 0.1015 10/10  306 2.2390e-16 0.1015 10/10 

P5 2 144 -1.0316 0.1222 10/10  135 -1.0316 0.1222 10/10 

P6 2 198 1.5459e-17 0.0367 10/10  240 5.1253e-16 0.0367 10/10 

P7 2 188 3.0000 0.1212 10/10  309 3.0000 0.1212 8/10 

P8 2 352 -186.7309 0.1609 10/10  273 -186.7309 0.1609 9/10 

P9 2 336 2.1316e-14 0.3910 8/10  510 2.1316e-14 0.3910 6/10 

P10 2 144 0.3979 0.0226 10/10  243 0.3979 0.0226 10/10 

P11 4 468 -10.1532 0.3048 9/10  660 -10.1532 0.3048 6/10 

P12 4 312 -10.4029 0.5099 10/10  545 -10.4029 0.5099 6/10 

P13 4 364 -10.5321 0.0278 10/10  755 -10.5321 0.0278 6/10 

P14 2 204 5.5907e-17 0.0350 10/10  669 2.3476e-16 0.0350 8/10 

P15 3 286 1.4839e-16 0.0227 9/10  625 4.5909e-16 0.0227 7/10 

P16 5 626 4.5660e-15 0.0331 8/10  1422 8.6884e-14 0.0331 6/10 

P17 7 728 2.1645e-16 0.0388 8/10  1936 6.9033e-16 0.0388 6/10 

P18 10 788 4.6800e-16 0.7221 7/10  2343 4.2329e-14 0.7221 6/10 

P19 20 1490 1.9578e-15 0.5435 7/10  9114 4.5555e-15 0.5435 6/10 

P20 30 2480 1.9207e-16 0.4026 7/10  13391 3.4219e-14 0.4026 6/10 

P21 50 9520 4.1172e-15 1.0644 7/10  48450 9.8943e-15 1.0644 7/10 
 

By comparing the results of algorithm DSA with 

algorithm MSA, we see the superiority of algorithm 

DSA in all results due to dividing the multi-

dimension problem into parts of one-dimensional 

problems, as algorithm DSA requires a lower 

function evaluation than algorithm MSA for almost 

all test problems, as can be seen clearly in the column 

(  ). Likewise, in column (  ), algorithm DSA has 

an advantage in reaching the global minimizer with 

more effectiveness and accuracy than algorithm 

MSA. As for the time spent calculating each problem, 

algorithm DSA took much less time than algorithm 

MSA to solve the same problem, as can be seen 

clearly in column (    ), and finally in Column 
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(  ), the successful attempts to reach the global 

minimizer for algorithm DSA were better than 

algorithm MSA for all test problems. All comparison 

results are shown in Table 4. 

5. Conclusions 
This paper introduces two algorithms, DSA and 

MSA, to solve unconstrained global optimization 

problems. The DSA algorithm operates by 

transforming a multidimensional problem into a one-

dimensional problem. While the MSA algorithm 

finds the global minimizer without dividing the 

problem into partitions with assistance from the 

auxiliary function. Then we applied the two 

algorithms to test problems of different dimensions. 

When comparing them with each other, the 

computational results showed that the algorithm DSA 

was better and faster in terms of time, function 

evaluation, and number of successful attempts in 

reaching the global minimizer compared to the 

algorithm MSA, as can be seen from the relevant 

tables.
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