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ABSTRACT

This paper introduces innovative basis functions derived

from Miintz spaces, aimed at addressing the computational
challenges of Fractional Differential Equations (FDES). Our
primary focus is the creation of these functions using
singular indices linked to the solutions of FDEs. We
thoroughly investigate the properties of these fundamental
functions to understand their operational potential. These
functions are particularly adept at capturing initial singular
indices, making them highly suitable for solving FDEs. The
proposed numerical method is distinguished by its rapid
convergence rates, showcasing its efficiency in
computational evaluations. We validate our approach by
presenting numerical examples that highlight its accuracy
and reliability. These examples confirm the effectiveness and
efficiency of the new basis functions from Muntz spaces in
accurately solving FDEs. This research advances numerical
methods for FDEs and serves as a valuable resource for
researchers seeking robust and reliable techniques.
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1. Introduction

Fractional Differential Equations (FDEs) play a
crucial role in applied mathematics and are
widely used in various scientific and engineering
fields. The adaptability of fractional calculus is
particularly notable in areas like engineering,
physics, signal processing, and anomalous
diffusion (see, e.g., [1, 2, 3, 4]). Recent studies
suggest that fractional derivatives provide more
accurate representations of numerous dynamic
processes than traditional derivatives. In these
models, different fractional operators, such as the
Riemann-Liouville integral/derivative and the
Caputo derivative, are utilized. These operators
introduce nonlocality and weakly singular
kernels, leading to non-smooth behavior in FDE
solutions near domain boundaries.

The wide use of FDEs has led to a surge of
interest in developing numerical methods for
solving them in recent decades. There has been
significant focus on approximating fractional
integrals and derivatives [5, 6, 7, 8]. Despite the
challenges of the nonlocal and non-smooth nature
of FDEs, recent years have seen many new
numerical methods proposed for their solution.
However, most of the existing literature focuses
on error analysis for smooth solutions (see, e.g.,
[9, 10, 11, 12, 13, 14, 15]).

This research aims to address the challenges of
solving FDEs, especially those with non-smooth
characteristics near domain boundaries. Inspired
by the nonlocal nature of fractional operators,
global methods like spectral methods have

become popular for solving fractional problems.
However, singular terms in FDE solutions hinder
exponential ~ convergence  with  classical
orthogonal polynomials. Recent methods aim to
handle singularities in non-smooth FDE solutions
[16, 17].

The domain of numerical solutions for FDEs is
ever-evolving, and this research aims to make a
substantial contribution to its development.

Our primary objective is to present new basis
functions originating from Mintz spaces,
meticulously designed using the singular indices
of the unknown solutions in Fractional
Differential Equations (FDEs). We investigate
the characteristics of these basis functions,
focusing on their capability to capture the first
two singular indices. This study introduces a
numerical method founded on these innovative
functions, showcasing its rapid convergence
rates. To validate the accuracy and efficiency of
our approach, we include numerical examples.
This research aims to develop a robust and
efficient framework for numerically solving
Fractional Differential Equations (FDESs), with
the potential to make significant contributions to
the field of fractional calculus applications. We
thoroughly analyze the properties of these basis
functions, particularly their ability to capture the
initial two singular indices. The primary
objective of this new approach is to enhance the
accuracy and efficiency of numerical solutions
for FDEs. We introduce a numerical method
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based on these innovative basis functions,
characterized by its high convergence rates, and
validate it through a series of numerical
examples. These examples demonstrate the
effectiveness and precision of the proposed
method, underscoring its practical applications.
By integrating theoretical foundations with
numerical implementation, this study provides a
solid framework for solving a broad spectrum of
FDEs, thereby advancing the field of fractional
calculus applications.

The structure of the paper is as follows: The next
section provides an overview and introduces
some preliminary concepts. In Section 3, we
introduce a novel basis function based on the
singular index of the function and describe the
implementation of the numerical methods used to
solve linear FDEs. Section 4 presents numerical
examples and applications, demonstrating the
effectiveness, accuracy, and convergence rates of
the proposed methods. The final section includes
our conclusions and a discussion of the
approaches used in this study.

2. Preliminaries

In this section, we present essential definitions
and properties pertaining to fractional integrals
and derivatives, along with Muntz-Legendre
polynomials, which will be used extensively
throughout this paper. [12, 13].

Definition 2.1: For a function u: [a, b] = R and
a real number a > 0, the Riemann-Liouville
fractional integrals are defined as:

dfu(t) = s [, (6 = ) uls)ds, (D)

and the Caputo fractional derivative of order a is
defined as:

gD{“u(t)t =

e J,t—s)ne LM (s)ds, n—-1<
a<n, (2)

here, n is the smallest integer greater than or
equal to «, I'(.) is the gamma function.

In the realm of fractional calculus, a noteworthy
connection exists between the Riemann-Liouville
fractional integral and the Caputo fractional

derivative. For a given functionu(t), this
relationship can be expressed as follows:

I EDEU(E) = u(t) - Tpoh @ (¢

a)*,  SDEIfu(t) = u(t) (3).

This relationship underscores the interplay
between fractional integral and fractional

derivative operators, offering insights into their
combined effects on  functions.  This

TJPS

understanding is crucial for a comprehensive
grasp of fractional calculus. Below, it is evident
that fractional Integral and derivative operators
applied to power functions result in power
functions of the same form. Consider the
following:

JdE(t—a)f = TED_(p _gyfta, g1, (4)

T r(B+a+1)
and
r(g+1) _
D (t - a)f =m(t—a)ﬁ “ B>n-—
1. (5

Definition 2.2: We define a Miintz sequence as a
monotonically increasing sequence of distinct
real numbers

A={Ag, 41,45, ..}, g <A <A, <, (6)
and we refer to a system of the form
{tho,t*1,t%2, .} as a Mintz system, with the
corresponding Miintz space associated with the
parameter A.

From [12], the space associated with A =
{0,14,4,, ... } is a dense subset of C([0,1]) if and

only if ,%"' %+ .- = 0o, The Miintz-Legendre
1 2

is defined as polynomials that satisfy the

condition of being a linear combination of

powers of a given base function over a specified
interval. More formally, a sequence of

polynomials {L,(t)} is considered a Mintz—-
Legendre sequence on the interval [a, b] if it can
be expressed as:
Li(t) = B cipt™, cip =

k=142
H oy O
n]:O,]:L(Al A])
The  orthogonality = of  Mintz-Legendre

polynomials in L?[0,1] concerning the Legendre
weight is demonstrated (see [12]),

[} Le@®Ly() dt = =2k (8)

22 +1°
Moreover, there are several recurrence relations,
such as:

t(L () = L'=1(®) = AeLi(t) + (1 +
Ak=1)Lk-1(t), (9)

L (t) =

Lp_1(t) —

e + g + Dt [1 57411, (s)ds. (10)
3. Main Results

In this section, we introduce a numerical method
to solve the following linear FDEs of order
0<ac<l,

aDfu(t) + a(®u(t) = f(t), t € (01],
with initial condition u(0) = 0.

(11)
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To construct the new Mintz polynomials, it is
essential to understand the regularity behavior of
the exact solution of an FDE. To determine this
behavior, we need to identify the singular indexes
Algorithm

TJPS

of the exact solution at the initial time. For
finding these indexes, we can use the following
Algorithm.

Step 1: Takea=0and b =1,

Step 2: Compute r; = a +=—j for j = 0,1,..., 10,

f@®

Step 3: Compute s; = lim;_, 77

forj=0,1,..,10,

Step4: If sj =0forj<kands, #0,puta=r,_qand b =ry,

Step 5: Do Steps 2-4 until b —a < 0.01,

Step 6: Put By —a =ry_q and ¢y = 1y,

Step 7: Do Steps 2-5 for f(t) :== f(t) — c,tF1~7,
Step 8: Put put 8, — a = 1y_q and c; = ry,.

Now, we assume that the parameters §; and 3,

are the smallest singular index of the function

u(t) obtained the above Algorithm. Due to the

presence of singular indexes, we consider a

Miintz sequence as

A={0,B1,B2,1+ 1, 14,2,2 + 1,2 +

Bas-} B <P, (12)

It should be noted that such a sequence holds
.y 0 1 0 1

under  condition Zi=0m + z”"@ = 00,

making it a dense subspace of C([0,1]). Based on
this sequence, we define the following Miintz -
Legendre polynomials
k—1

Li(t) = cope + tPr 3 2 T cpppn st +

8 [5-1] .
th2 32 coipt! = cop + tPLP(0) +
thp,, (t). (13)
Also, using (3), we have

1
Jo Le@®L(t) dt =
% k is odd
1
Zﬁi% k is even (14)
T

1 k=i=0
where §;; is Kronecker delta function. Now, we
approximate the unknown solution of (11) using
truncated Mintz -Legendre polynomials of
degree n (n is even number), i.e.,
u(t) ® Y=o i Li(t) = Xk=o dk Cox +
thr YR_o dy Py () +
tP2 TR_ody Py (t).  (15)
Using the following notations

d =[do,dy, ..., d]", € = [C01,Co2s s Conl ., B
= [Pio(®), Py (), ., P (8)] )
=1,

we can write

U, (0) = (& + tA1P + tP2P,)d.  (16)

On the other hand, we have P, = C,T(t) and

B," = ¢,T(t), where

€11
/CLZ \

c _ | G €33 | C. =
17| Ca C34 } rv2 T
Cin C3n Cn-1n nxt

2
23
)
€24 Caa )
CZ,n C4,n Cn,n nxg
1
t
h(t) = .. (A7)
tn—l

From (16), we can obtain

U, (0) = (& + tART (@) C,T + th2hT ()¢ )d =
G(td. (18)

To have high efficiency and accuracy of the
considered Mintz sequence A for approximating
functions, we consider the following function
u(t) = t% + t%6sin(t1).
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Fig. 1: The errors |u(t) — u,(t)| using present basis functions.
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Fig. 2: The errors |u(t) — u,(t)| using the classical orthogonal polynomials.

Using the presented algorithm, the values of
B1 = 0.499 and B, = 0.699 have been obtained
and we have approximated this function with the
introduced bases. The error values for several n
values are depicted in Figure 1. We have also
approximated this function with classical
polynomials and shown its error in Figure 2. It
can be clearly seen that the current bases are
suitable for approximating non-smooth functions
at the endpoints.

For solving FDE defined in (11), we need to
evaluate the Caputo fractional derivative of
tA1hT (¢) and tP2hT (¢), using (1), we get
EDEtPLAT (t) = thranT (t)D], (19)
where DI is a diagonal matrix with entries

r~ _ T(@i+B1) . _
(D1)ii = TGt E ) for i =1,2,...,n. Similarly,

we have

§DEtP2nT (t) = tP2=*hT (t)D], (D})i; =
r@i+g,) . _

TiBa = 1,2,..,n (20)

Taking the Caputo fractional derivative of both
sides (18) and substituting (19)-(20) in it, we
have

oDfuy (t) =

(& + threnT (e)DT ¢," + thz=*hT ()DI ¢, )d: =
Ht)d. (21)

From (11), we can define the following residual
function

R(t,d) = (H®) +a@®)6®)d — (). (22)

To evaluate an unknown vector d, we can use the
initial condition u(0) = G(0)d = u, and the
following n algebraic equations

[, R(t,d)G(Hdt =0.  (23)

Another method to find unknown coefficients d,
we can use the collocation method. For this
purpose, we consider the Chebyshev-Gauss-
Lobatto points as follows

te=2(1-cos(5)) k=01,..n. (24
Taking these collocation points in (22), we can
obtain the linear system
(H(tk) + a(tk)G(tk))C2 =f(t) k=
1,2,..,n, (25)

u(0) = G(0)d = uy.
The linear system under consideration can be
effectively solved by employing various
numerical algebraic methods.
Remark 1: It should be noted that the presented
method can be easily extended to fractional
differential equations of various forms, including
both linear and non-linear ones, over arbitrary
intervals.
4, Results and Discussion
In this section, we present several examples to
demonstrate the effectiveness and applicability of
the proposed method. The first example aims to
illustrate the theoretical convergence rates

65



66

Tikrit Journal of Pure Science Vol. 29 (4) 2024

https://doi.org/10.25130/tjps.v29i4.1629

discussed in this paper. Here, we explore FDEs
where the solutions may exhibit singularities at
the endpoints.

Example 1: Consider the following linear FDE
[10]

oDfu(®) = f(£), u(0) =0,

with the exact solution u(t) = tF1 + th2 + ths +

tP+ and

r(g;+1 -
f@® = ?:1# Pime
The presented method has been employed to
solve the equation for various values of a and ;.
For the new method, we compute the matrices C;
and D; for i = 1,2. Then, by solving the linear

TJPS

system (), we obtain the unknown coefficients d;
and the results are depicted in Figures 3-5. In
Figures 3-4, the L?-errors

1

e = wllz = (f; @(®) = un(©))?)?,

are illustrated under different values of n, while
the |u(t) — u,(t)| is portrayed in Figure 5. It is
evident from the plots that the proposed method
exhibits exceptional efficiency and accuracy. For
comparison, one can refer to [10], where they
obtained similar results for significantly larger
values of n, while we have achieved comparable
errors for much smaller values of n.

L 1
5 10 15

1 ! L
20 25 30

Fig. 3: Ly-error analysis for various case « = 81 = 0.4,, = 0.82,83 = 0.95,8, = 1.1.

107 T T

T T T

L I 1
20 25 30

Fig. 4: L,-error analysis for various case « = 0.3,8, = 0.42,, = 0.67,63 = 0.8,4 = 1.25.

10-11

10»12

=)
>

lu(t-u, 0]

-
=)
IS

T T T T T

10~16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Fig. 5: Graph of |u(t) — u,(t)| for variousthecasea = 1, =0.1,, =0.2,8; =1.1,8, =
1.2.

Example 2: Consider the following linear
fractional oscillation equation, which can be
formulated as [7, 11]:

cDFu(t) +u(t) =0, u(0) =1, t € (0,T].

The exact solution to this problem is u(t) =
Eq1(—t%), where E,5(.) is the Mittag-Leffler
function defined as
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o ek
Eap(t) = Xk=or iy
The fractional differential equation was solved
for various values of the parameter a using the
proposed method. By introducing the variable

transformation t := % the FDE was reformulated,

and the proposed method was extended to an
arbitrary interval (0,T). In Figure 6, the
comparison between the exact solution and the
numerically obtained solution is depicted for
n = 20. It is observed that the numerical solution

rapidly converges to the exact solution.
1
Uy (a=09
%\05 —Exact
0
0 1 2 3 4 5
t
1 . . .
+u20(t)'°=0‘4
%0'5%
0
0 5 10 15 20

TJPS

Additionally, in Figure 7, the L,-errors are
presented for different values of n and a. The
error significantly diminishes with increasing
values of n. Furthermore, Table 1 compares the
error obtained from our method with several
methods presented in [10, 14, 15]. The results
indicate that our approach yields substantially
more accurate results compared to the methods
proposed in previous works. It is crucial to note
that our method achieves lower errors, especially
for very small values of n.

—— U, ()a=07

? 0.5 T

—— U (ha=0.1

5"/;0,55” puns it — Exact

0 10 20 30 40 50
t

108

10,10

Fig. 7: Ly-errors of the presented method for various valuesof a and T = 1.

Table 1: Comparison errors using the present method and methods in [11,14-15].

a=0.3 a=0.6

N In [10] In[14] | n Present N In [10] In [14] In[15] | n Present

Method Method

80 | 4.67e- 487e- | 5 5.31e-04 80 | 4.77e- 1.35e- 3.36e- | 5 1.41e-04
05 04 06 05 05

160 | 1.45e- 2.64e- | 10 6.08e-05 160 | 1.20e- 4.37e- 8.4%- | 10 3.14e-06
05 04 06 05 06

320 | 4.40e- 1.31e- | 20 8.09e-06 320 | 3.03e- 1.42¢- 2.13e- | 20 9.12e-08
06 04 07 05 06

640 | 1.31e- 6.16e- | 34 2.18e-07 640 | 7.60e- 4.66e- 5.35e- | 30 1.51e-08
06 04 08 06 07
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Example 3: Consider the following FDE of order

TJPS

observe that the exponential convergence rate is

0<a<1,[7] obtained. Also in Table 2, we compare the error
§DEsin(t) = t17YE, 5 o(—t?), u(0) =0,t € results derived from the present methods and
(0,1]. presented in [7]. The superiority of the present

work compared to the previous methods can be
seen in this Table.

This problem is solved using the presented
methods with 8; = 0.9 and 3, = 1. We show the
L,-errors for some values of a in Figure 8. We

Table 2: Comparison errors using the present method and method in [8].

a=0.2 a=0.5 a=0.8
n In[7] Present In[7] Present In[7] Present
Method Method Method
5 1.17e-01 5.02e-04 2.51e-01 1.21e-03 4.64e-01 1.42e-03
10 4.06e-04 6.37e-07 1.29e-03 5.69e-06 3.14e-03 9.40e-05
15 43.01e-07 2.17e-12 1.08e-07 4.18e-10 3.32e-07 1.88e-08
20 1.02e-11 1.71e-13 8.76e-11 6.82e-13 3.49%e-11 1.32e-11

Remark 2: In this section, three numerical
examples are considered to evaluate the
efficiency and accuracy of the proposed method.

In the first example, the solution of the equation
contains four singular terms. The results
demonstrated that the method presented in this
paper is fully compatible with such singular
solutions and can accurately capture at least two
of these singular terms. Classical polynomial-
based methods exhibit limited accuracy when
dealing with such problems.

The numerical results of the second example
indicated that the spectral method proposed in
this work yields superior results compared to
finite difference methods and piecewise
polynomial-based methods. With significantly
fewer basis functions, a suitable level of accuracy
can be achieved.

Furthermore, the third example was designed to
compare the proposed method with generalized
Jacobi polynomials. Such bases are only capable
of capturing a single term from the irregular
solution. Overall, it can be concluded that the
method presented in this study is considerably
more effective than piecewise methods or
classical polynomial-based methods, including
Jacobi and Chebyshev polynomials.

5. Discussions and Conclusions

In this study, we developed novel basis functions
from Miintz spaces to tackle numerical solutions
of FDEs.

These functions, developed using singular indices
related to the unknown solutions in Fractional
Differential Equations (FDEs), excel at capturing
the first two singular indices. Our method has
shown impressive convergence rates and
efficiency, as validated by three numerical
examples. In the first example, our method

accurately identified at least two out of four
singular  terms, outperforming traditional
polynomial-based methods. The second example
demonstrated that our spectral method achieved
superior results with fewer basis functions
compared to finite difference and piecewise
polynomial methods. In the third example, our
method proved superior to generalized Jacobi
polynomials, which were only able to capture a
single term from the irregular solution.

In conclusion, the proposed method delivers a
precise and efficient solution for Fractional

Differential  Equations  (FDEs), offering
substantial ~ enhancements  over traditional
techniques in terms of accuracy and

computational efficiency. This research makes a
significant contribution to the field of numerical
solutions for FDEs by introducing a dependable
and effective technique, thus serving as a
valuable resource for future research and
practical applications in solving differential
equations with singularities.

Future work can enhance the proposed method
for solving FDEs in several directions. One
potential area is the extension to higher-
dimensional problems, utilizing Mintz space
basis functions to expand the method's
applicability. Another avenue is the development
of adaptive algorithms that dynamically select the
most effective basis functions from Mintz
spaces, thereby improving both efficiency and
accuracy. Integrating this approach with other
numerical techniques, such as finite element
methods, could result in hybrid methods that
combine the strengths of multiple approaches.
Additionally, applying the method to real-world
problems in fields such as physics, engineering,
and finance would demonstrate its practical
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utility and robustness in solving complex
differential equations. Conducting thorough error
analysis and establishing theoretical error bounds
would also provide deeper insights into the
method's reliability and performance. These
suggestions aim to extend the capabilities and
applications of the proposed method, making it a
valuable tool for addressing a wide range of
FDEs in both theoretical and practical contexts.
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