Multiplex PCR Technique for Simultaneous Detection and genotyping of E. granulosus, E. multilocularis, and other Taeniidae in some intermediate hosts in Erbil Province

Main Article Content

Hashm Hamad Abdullah
Muhammad Jamal Muhammad
Zuber Ismael Hassan

Abstract

One of the most significant helminthozoonosis in Iraq and around the world is cystic echinococcosis, which occur by the etiologic agent of Echinococcus granulosus and its distinguished by considerable intra-specific variability (genotypes G1–G10). DNA was extracted from 48 isolated cysts (25 sheep, 12 goats and 11 human) and used as templates to amplify using Trachsel method to differentiate Taeniide (Echinococcus spp. and/ or Taenia spp.) and mitochondrial cytochrome c oxidase subunit one (COX1) gene for genotyping. The PCR products were sequenced, and sequence analysis was used to further evaluate the data. Out of 48 separated of the host cysts, 36 isolates displayed the G1 genotype (100%), and in 12 samples, a nucleotide substitution at position 58 (T→C) results in polymorphism (99.9%). The G1 is considered that the most contagious and prevalent genotype of E. granulosus in the world. Our investigation revealed that, a single genotype that may be in charge of the disease's infectivity in sheep, goats, and human as well as its persistence in endemic areas. these epidemiological findings could be guided the successful hydatidosis control measures in Erbil Provence

Article Details

How to Cite
Hashm Hamad Abdullah, Muhammad Jamal Muhammad, & Zuber Ismael Hassan. (2024). Multiplex PCR Technique for Simultaneous Detection and genotyping of E. granulosus, E. multilocularis, and other Taeniidae in some intermediate hosts in Erbil Province. Tikrit Journal of Pure Science, 29(2), 1–6. https://doi.org/10.25130/tjps.v29i2.1638
Section
Articles

References

[1] Avila HG, Maglioco A, Gertiser ML, Ferreyra MP, Ferrari F, Klinger E, et al. First report of cystic echinococcosis caused by Echinococcus granulosus sensu stricto/G1 in Felis catus from the Patagonian region of Argentina. Parasitology Research. 2021;120:747-50.

[2] Hajimohammadi B, Dalimi A, Eslami G, Ahmadian S, Zandi S, Baghbani A, et al. Occurrence and genetic characterization of Echinococcus granulosus sensu lato from domestic animals in Central Iran. BMC Veterinary Research. 2022;18(1):1-13.

[3] Mehmood N, Muqaddas H, Ullah MI, Saarma U, Varcasia A. Genetic structure and phylogeography of Echinococcus granulosus sensu stricto genotypes G1 and G3 in Pakistan and other regions of the world based on nad5 gene. Infection, Genetics and Evolution. 2022;98:105223.

[4] Hua RQ, Du XD, He X, Gu XB, Xie Y, He R, et al. Genetic diversity of Echinococcus granulosus sensu lato in China: Epidemiological studies and systematic review. Transboundary and Emerging Diseases. 2022;69(5):e1382-e92.

[5] Sadjjadi SF, Mohammadzadeh T, Hafezi F, Sadjjadi SM. Evaluation of the Ability of Antigen B Originated from Echinococcus granulosus Sensu Stricto and E. canadensis for the Diagnosis of Confirmed Human Cystic Echinococcosis Using ELISA. Iranian Journal of Parasitology. 2022;17(3):358.

[6] Manterola C, Totomoch-Serra A, Rojas C, Riffo-Campos ÁL, García-Méndez N. Echinococcus granulosus sensu lato genotypes in different hosts worldwide: a systematic review. Acta parasitologica. 2021:1-25.

[7] Hüttner M, Siefert L, Mackenstedt U, Romig T. A survey of Echinococcus species in wild carnivores and livestock in East Africa. International journal for parasitology. 2009;39(11):1269-76.

[8] Nakao M, Lavikainen A, Yanagida T, Ito A. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). International Journal for Parasitology. 2013;43(12-13):1017-29.

[9] Fadakar B, Tabatabaei N, Borji H, Naghibi A. Genotyping of Echinococcus granulosus from goats and sheep indicating G7 genotype in goats in the Northeast of Iran. Veterinary parasitology. 2015;214(1-2):204-7.

[10] Casulli A, Interisano M, Sreter T, Chitimia L, Kirkova Z, La Rosa G, et al. Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infection, Genetics and Evolution. 2012;12(2):377-83.

[11] Hassan ZI, Mero WW, Casulli A, Interisano M, Boufana B. Epidemiological study of cystic echinococcosis in sheep, cattle and goats in Erbil Province. Science Journal of University of Zakho. 2016;4(1):43-55.

[12] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research. 1994;22(22):4673-80.

[13] Hall TA, editor BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series; 1999: Oxford.

[14] Trachsel D, Deplazes P, Mathis A. Identification of taeniid eggs in the faeces from carnivores based on multiplex PCR using targets in mitochondrial DNA. Parasitology. 2007;134(6):911-20.

[15] Boubaker G, Macchiaroli N, Prada L, Cucher MA, Rosenzvit MC, Ziadinov I, et al. A multiplex PCR for the simultaneous detection and genotyping of the Echinococcus granulosus complex. PLoS neglected tropical diseases. 2013;7(1):e2017.

[16] Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, et al. Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China. International journal for parasitology. 2005;35(6):693-701.

[17] Umhang G, Chihai O, Boué F. Molecular characterization of Echinococcus granulosus in a hyperendemic European focus, the Republic of Moldova. Parasitology research. 2014;113:4371-6.

[18] Nikmanesh B, Mirhendi H, Ghalavand Z, Alebouyeh M, Sharbatkhori M, EshratBeigom K, et al. Genotyping of Echinococcus granulosus isolates from human clinical samples based on sequencing of mitochondrial genes in Iran, Tehran. Iranian journal of parasitology. 2014;9(1):20.

[19] Moradi M, Meamar AR, Akhlaghi L, Roozbehani M, Razmjou E. Detection and genetic characterization of Echinococcus granulosus mitochondrial DNA in serum and formalin-fixed paraffin embedded cyst tissue samples of cystic echinococcosis patients. PLoS One. 2019;14(10):e0224501.

[20] Kartal K, Mustafa K, Erdoğan M. Molecular characterization of echinococcus granulosus isolates found in cattle, buffaloes, sheep and goats in Afyonkarahisar, Turkey. Kocatepe Veterinary Journal. 2020;13(2):152-60.

[21] Al-Mutairi N, Taha H, Nigm A. Molecular characterization of Echinococcus granulosus in livestock of Al-Madinah (Saudi Arabia). Journal of Helminthology. 2020;94:e157.

[22] Barazesh A, Sarkari B, Shahabi S, Halidi AG, Ekici A, Aydemir S, et al. Genetic diversity of Echinococcus granulosus isolated from humans: A comparative study in two cystic echinococcosis endemic areas, Turkey and Iran. BioMed Research International. 2020;2020.

[23] Mardani P, Ezabadi AT, Sedaghat B, Sadjjadi SM. Pulmonary hydatidosis genotypes isolates from human clinical surgery based on sequencing of mitochondrial genes in Fars, Iran. Journal of cardiothoracic surgery. 2021;16:1-8.

[24] Khalf MS, Al–Faham MA, Al-Taie LH, Alhussian HA. Genotyping of Echinococcus granulose in Samples of Iraqi Patients. IOSR Journal of Pharmacy and Biological Sciences. 2014;9(3):06-10.

[25] Hajialilo E, Harandi MF, Sharbatkhori M, Mirhendi H, Rostami S. Genetic characterization of Echinococcus granulosus in camels, cattle and sheep from the south-east of Iran indicates the presence of the G3 genotype. Journal of helminthology. 2012;86(3):263-70.

[26] Rajabloo M, Hosseini SH, Jalousian F. Morphological and molecular characterisation of Echinococcus granulosus from goat isolates in Iran. Acta tropica. 2012;123(2):67-71.