Bioactivity of Gold Nanoparticles Synthesized from Lion's Mushroom on Multidrug-Resistant (MDR) ESKAPE Bacterial Isolates
Main Article Content
Abstract
The current study aims is to evaluate the antibacterial activity of gold nanoparticles manufactured using the green method from aqueous extract of lion's mane fungus against multidrug-resistant (MDR) ESKAPE group isolates, which included Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, and klebsiella pneumoniae. Antibiotic resistance is one of the biggest threats to public health around the world, and to treat this, many therapeutic alternatives are being used, including the use of nanotechnology to create nanoparticles. During this study, isolates from the ESKAPE group were diagnosed and a sensitivity test to five antibiotics was performed, in addition to the synthesis of gold nanoparticles and their examination using several techniques, including an ultraviolet-visible spectroscopy device, an Fourier transmission infrared (FTIR) spectroscopy device, and a scanning electron microscope (SEM). And determine the inhibitory activity of nanoparticles against bacterial isolates. The green synthesis of gold nanoparticles (AuNPs) was accomplished using an aqueous extract of lion's mane mushroom. Tests confirmed that the formed particles have high absorbance at a wavelength of (540 nm). It was observed using a scanning electron microscope that the nanoparticles are spherical in shape and with nano sizes ranging from (20.77 to 29.37 nm). As for the FTIR examination, the range is between (447.49 cm-1 - 3398.57 cm-1). The results of the current study showed that the biosynthesized AuNPs possess antibacterial activity against ESKAPE group isolates, with inhibition diameters ranging from (9 mm – 21 mm).
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
1. Tang KWK, Millar BC, Moore JE. Antimicrobial resistance (AMR). British Journal of Biomedical Science. 2023;80:11387. https://doi.org/10.3389/bjbs.2023.11387
2. Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial resistance: addressing a global threat to humanity. Public Library of Science San Francisco, CA USA; 2023. p. e1004264. https://doi.org/10.1371/journal.pmed.1004264 https://doi.org/10.1371/journal.pmed.1004264
3. Ge P, Zhang J, Ding T, Xianyu Y. Surface chemistry of gold nanoparticles for bacterial detection and antimicrobial applications. ACS Materials Letters. 2023;5(3):638-55. https://doi.org/10.1021/acsmaterialslett.2c00923
4. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, et al. Alternatives to antibiotics—a pipeline portfolio review. The Lancet infectious diseases. 2016;16(2):239-51. https://doi.org/10.1016/S1473-3099(15)00466-1
5. Tijani NA, Hokello J, Awojobi KO, Marnadu R, Shkir M, Ahmad Z, et al. Recent advances in Mushroom-mediated nanoparticles: A critical review of mushroom biology, nanoparticles synthesis, types, characteristics and applications. Journal of Drug Delivery Science and Technology. 2024:105695. https://doi.org/10.1016/j.jddst.2024.105695
6. Sarkar J, Naskar A, Nath A, Gangopadhyay B, Tarafdar E, Das D, et al. Innovative utilization of harvested mushroom substrate for green synthesis of silver nanoparticles: A Multi–Response optimization approach. Environmental Research. 2024;248:118297. https://doi.org/10.1016/j.envres.2024.118297
7. Bhangale H, Bachhav S, Sarode K, Patil D, editors. Green synthesis of silver nanoparticles using mushroom species, their characterization and catalytic activity. Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications-Volume 2; 2020: Springer. https://doi.org/10.1515/ejnm-2016-0016
8. Owaid MN, Ibraheem IJ. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. European Journal of Nanomedicine. 2017;9(1):5-23. https://doi.org/10.1007/978-3-030-16962-6_34
9. Koliyote S, Shaji J. A Recent Review on Synthesis, Characterization and Activities of Gold Nanoparticles Using Plant Extracts. Ind J Pharm Edu Res. 2023;57(2s):s198-s212. http://dx.doi.org/10.5530/ijper.57.2s.24
10. Raman J, Lakshmanan H, John PA, Zhijian C, Periasamy V, David P, et al. Neurite outgrowth stimulatory effects of myco synthesized auNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (Pc-12) cells. International Journal of Nanomedicine. 2015:5853-63. https://doi.org/10.25130/tjps.v28i2.1332
11. Hu X, Ahmeda A, Zangeneh MM. Chemical characterization and evaluation of antimicrobial and cutaneous wound healing potentials of gold nanoparticles using Allium saralicum RM Fritsch. Applied Organometallic Chemistry.2020;34(4):e5484. https://doi.org/10.1002/aoc.5484
12. Mocan L, Tabaran FA, Mocan T, Pop T, Mosteanu O, Agoston-Coldea L, et al. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. International journal of nanomedicine. 2017:2255-63. https://doi.org/10.2147/IJN.S124778
13. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS nano. 2017;11(7):6904-10. https://doi.org/10.1021/acsnano.7b02035
14. Linklater DP, Juodkazis S, Rubanov S, Ivanova EP. Comment on “bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli”. ACS applied materials & interfaces.2017;9(35):29387-93. https://doi.org/10.1021/acsami.7b05707
15. Pincus DH. Microbial identification using the bioMérieux Vitek® 2 system. Encyclopedia of Rapid Microbiological Methods Bethesda, MD: Parenteral Drug Association. 2006;2006:1-32.
16. Donga S, Bhadu GR, Chanda S. Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artificial cells, nanomedicine, and biotechnology. 2020;48(1):1315-25. http://dx.doi.org/10.1080/21691401.2020.1843470
17. Morsi M, Oraby A, Elshahawy A, Abd El-Hady R. Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. Journal of materials research and technology. 2019;8(6):5996-6010. https://doi.org/10.1016/j.jmrt.2019.09.074
18. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Critical reviews in microbiology. 2016;42(2):209-21. https://doi.org/10.3109/1040841x.2014.917069
19. Manjunath HM, Joshi CG, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus–Penicillium citrinum. IET nanobiotechnology.2017;11(1):40-4. https://doi.org/10.1049/iet-nbt.2016.0065
20. Ahmed RH, Mustafa DE. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters.2020;10(1):1-14. https://doi.org/10.1049/nbt2.12078
21. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology. 2022;16(4):115-44. https://doi.org/10.1007/s40089-019-00291-9
22. Diksha D, Gupta SK, Gupta P, Banerjee UC, Kalita D. Antibacterial potential of gold nanoparticles synthesized from leaf extract of Syzygium cumini against multidrug-resistant urinary tract pathogens. Cureus. 2023;15(2). https://doi.org/10.7759%2Fcureus.34830
23. Mirzaei S, Javanbakht V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. International journal of biological macromolecules. 2019;134:1187-204. https://doi.org/10.1016/j.ijbiomac.2019.05.119
24. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. Journal of clinical microbiology. 2021;59(12):10.1128/jcm. 00213-21. https://doi.org/10.1128/jcm.00213-21
25. Qader QA, Noumi BS, Saleh RF. Antibacterial effect of biosynthesis silver nanoparticles on Pseudomonas aeruginosa. Tikrit Journal of Pure Science. 2021;26(5):22-6. https://doi.org/10.25130/tjps.v26i5.172
26. Saleh RF, Gaidan AM, Al-Mayah QS. Green synthesis of silver nanoparticles using aqueous leaf extract of Ocimum basilicum and investigation of their potential antibacterial activity.2021. http://www.doi.org/10.26538/tjnpr/v1i4.5
27. Roulová N, Mot’ková P, Brožková I, Pejchalová M. Antibiotic resistance of Pseudomonas aeruginosa isolated from hospital wastewater in the Czech Republic. Journal of Water and Health. 2022;20(4):692-701. https://doi.org/10.2166/wh.2022.101
28. Zuniga-Moya JC, Caballero CA, Loucel-Linares M, Benitez MJ, Zambrano-Garcia E, Fajardo LV, et al. Antimicrobial profile of Acinetobacter baumannii at a tertiary hospital in Honduras: a cross-sectional analysis. Revista Panamericana de Salud Pública. 2020;44. https://doi.org/10.26633/RPSP.2020.46
29. Mohammed NH, Arif SK. Study the Role of the Efflux Pump in Multidrug-Resistant Acinetobacter baumannii. Tikrit Journal of Pure Science. 2023;28(2):1-11.
30. Patilaya P, Husori DI, Marhafanny L. Susceptibility of Klebsiella pneumoniae isolated from pus specimens of post-surgery patients in Medan, Indonesia to selected antibiotics. Open access Macedonian journal of medical sciences. 2019;7(22):3861. https://doi.org/10.25130/tjps.v28i2.1332
31. Mahmood YS, Abed SM, Alwan AM. Isolation, Identification of Bacterial Species Causing Chronic suppurative Otitis Media and Detection Some of Their Virulence Factors. Tik J of Pure Sci. 2019;24(7):45-51. https://doi.org/10.25130/tjps.v24i7.457
32. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology. 2014;12(1):35-48.
33. Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina.2011;47(3):19. https://doi.org/10.3390/medicina47030019
34. Ghramh HA, Khan KA, Ibrahim EH, Setzer WN. Synthesis of gold nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials. 2019;9(5):765. https://doi.org/10.3390/nano9050765
35. Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, et al. Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. Journal of Photochemistry and Photobiology B: Biology. 2017;173:250-7. https://doi.org/10.1016/j.jphotobiol.2017.06.003
36. Umamaheswari C, Lakshmanan A, Nagarajan N. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. Journal of Photochemistry and Photobiology B: Biology. 2018;178:33-9. https://doi.org/10.1016/j.jphotobiol.2017.10.017
37. Husseiny M, Abd El-Aziz M, Badr Y, Mahmoud M. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007;67(3-4):1003-6. https://doi.org/10.1016/j.saa.2006.09.028
38. Hamelian M, Hemmati S, Varmira K, Veisi H. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of the Taiwan Institute of Chemical Engineers. 2018;93:21-30. https://doi.org/10.1016/j.jtice.2018.07.018
39. Bhat R, Sharanabasava V, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. Journal of Photochemistry and Photobiology B: Biology. 2013;125:63-9. https://doi.org/10.1016/j.jphotobiol.2013.05.002
40. Hatipoğlu A. Rapid green synthesis of gold nanoparticles: Synthesis, characterization, and antimicrobial activities. Prog Nutr. 2021;23:e2021242. https://doi.org/10.23751/pn.v23i3.11988
41. Awad MA, Eisa NE, Virk P, Hendi AA, Ortashi KM, Mahgoub AS, et al. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Materials Letters. 2019;256:126608. https://doi.org/10.1016/j.matlet.2019.126608
42. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 2002;3(5):461-3. https://doi.org/10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
43. Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry and Physics. 2011;129(1-2):558-63.
44. Paul B, Bhuyan B, Purkayastha DD, Vadivel S, Dhar SS. One-pot green synthesis of gold nanoparticles and studies of their anticoagulative and photocatalytic activities. Materials Letters. 2016;185:143-7. https://doi.org/10.1016/j.matchemphys.2011.04.068
45. Li X, Robin son SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS nano. 2014;8(10):10682-6.
46. Piruthiviraj P, Margret A, Krishnamurthy PP. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi. Applied Nanoscience. 2016;6:467-73. https://doi.org/10.1021/nn5042625
47. Fatima F, Pathak N, Verma SR, Bajpai P. In vitro antimicrobicidal and cytotoxicity efficacy of gold nanoparticles synthesized from Alternaria brassicae (KF934409). SOJ Pharm Pharm Sci. 2016;3:1-6. https://doi.org/10.1007/s13204-015-0460-4
48. Aljohani FS, Hamed MT, Bakr BA, Shahin YH, Abu-Serie MM, Awaad AK, et al. In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific reports. 2022;12(1):6269. https://doi.org/10.1038%2Fs41598-022-10251-7
49. Mytlak FA. Synthesis and characterization of Au nanoparticles for nanomedicine application. Iraqi Journal of Physics. 2017;15(35):109-16. https://doi.org/10.30723/ijp.v15i35.59