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ABSTRACT

The Solar Cell Capacitance Simulator (SCAPS-1D) software is used to investigate
the optimal use of methylammonium tin chloride as the active material in perovskite
solar cells (PSCs), a new class of solar cells. The formulation of PSC is as follows:
FTO/ETL/CH3NH;3SnCIs/HTL/Au. To improve the performance of perovskite solar
cells, various materials, such as IGZO, SnO2, TiO2, and ZnO, are tested as electron
transport layers (ETLs), and Spiro-OMeTAD, NiO, Cu20, and CuO are tested as hole
transport layers (HTLs). The study shows that among these ETLs, SnO, records the
highest potential to achieve high energy conversion (1) when combined with Spiro-
OMEeTAD as the HTLs. In addition, the total defects (N;) were studied in the PSC by
keeping N;constant in the first two layers and varying N in the third layer. The results
show that PSC is indeed efficient; It is desirable to have a N of (10> cm™) for the
ETL (Sn0.), (10° cm™) for the absorber layer (CH3NH3SnCls), and (10'* ¢m™) for
the HTL (SpiroOMeTAD). The power conversion efficiency has increased for this
output value to (13.68 %) with an open circuit voltage (Vo) of (1.6 V). This
development aims to enhance the performance of environmentally friendly, lead-free

solar cells based on tin-based perovskite materials.
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INTRODUCTION

Perovskite solar cells are a breakthrough in a positive effect on system improvement of the film
renewable energy research that addresses the (9 In addition, it prevents the oxidation of Sn in
limitations of silicon solar cells. Its superior atmospheric oxygen, thereby maintaining the same
performance has the potential to benefit humanity ~ chemical state as the raw materials ©->7). In this
(1,2) greatly. The inclusion of lead (Pb) in PSCs can regard, CH3NH3SnCl; has been used as an
have adverse environmental effects, making it adsorbent to reduce the toxicity (4). The direct band
undesirable for society. The non-poisonous detail gap of these materials ranges from (2.15 to 3.59 eV)
tin (Sn) is placed in the same institution as lead (Pb) 8 Consequently, it is believed that these solar
on the periodic desk @. It would be interesting to  cells, which are based on perovskite, will exhibit a
examine the consequences of replacing Pb by Sn in substantial ~ short-circuit  current. Several
CH3NH;3PbX;. To achieve efficient solar-cell challenging elements must be addressed to improve
performance, lead-free natural PSCs must possess the performance of Sn-based devices . In their
the same optical, structural, and photovoltaic 2018 study, they demonstrated that the created
properties as their lead counterparts . The perovskite solar cell, which utilized a solid polymer
replacement of Pb by Sn in the open field for the electrolyte based on polyethylene oxide, exhibited a
fabrication of CH3NH;3SnCls photoelectric cells in consistent 11 of (0.17 %) for powdered perovskite
the presence of high chlorine (Cl) and excess Cl has and ultimately achieved (0.55 %) for crystalline
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perovskite of CH3;NH3SnCl; under one sun
condition (100 mW/cm?)
addition, employed SCAPS-1D to model a lead-free
device with an absorber layer composed of
CH3NH3SnCl; (9). They aimed to optimize the

device

in ambient air (!9, In

by manipulating variables such as
temperature, acceptor density, thickness, and total
defect density. Based on thermal stability analysis,
ClI halide-based perovskites exhibit higher thermal
stability. Nevertheless,
efficiency reached a value of (10.52 %). This work
aims to select the best ETL and HTL layers and find

the effect of total defect density of various layers on

the power conversion

the electrical output of the perovskite solar cell and

record the maximum power conversion efficiency.

Back contact

Glass substrate

Light
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ANALYTICAL METHODS

SCAPS 1D 3.3.09 is a software tool designed to
model the functioning of photovoltaic cells in a one
dimension. It is specifically created to simulate
perovskite solar cells (!'*'?). These solar cells have a
glass base with a fluorine-doped tin oxide (FTO)
coating that supports their standard n-i-p structure.
Figure 1 illustrates the process of fabricating the
different cell components, using layers of FTO as
the front contact and gold (Au) as the back contact.
The cell design features a layer of perovskite
material (CH3NH3SnCls) that acts as a barrier
between the ETLs and HTLs (*'%, The common
solar spectrum (AM1.5G) is used to generate the
incident power density (1000 W/m?) at (300 K).

Fig. 1: Cell structure of this study: FTO/ SnO2/ CH3NH3SnCls/Spiro OMe-TAD/Au

The researchers use SCAPS-1D to accurately
determine the electrical properties under various
lighting conditions and temperatures, as mentioned
by (9. Additionally, the SCAPS-1D program
employs advanced methods based on three key
equations: Poisson's equation (1), the electron
transport equation (2), and the hole transport
equation (3).

;_x(_s(x) %) =q[p(x) —n(x) + N* =N~ +
pe(x) — ne(x) ....(1)

dpn Pn—Pno dE dpn d?py
— = _—— —— uw,E—+D

dt Gp_ T PnHp dx Hp dx +Dp dx2
dn np-n dE dn d?n
—_p _ _p__po = _p p
dt G- T + Mylin dx + dx +Dy dx2

. (3)
Where D represents the diffusion coefficient, n, p,
nt, and pt stand for free electrons, free holes, trapped
electrons, and trapped holes, respectively. On the

other hand, G is the generation rate, 1, is the hole
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lifetime, tn is the electron lifetime, pp is the electron
mobility, un is the hole mobility, q is the electron
charge, E is the electric field, W is the electrostatic
potential, and ¢ is the dielectric constant. N*
represents the ionizing acceptor- like doping
concentration, while N- represents the ionizing
donor-like doping concentration, and X represents
the thickness of the cell'®. SCAPS-1D simulates
PSCs using four layers, with n-type (IGZO, SnO,,
TiO2, and ZnO) materials used to evaluate the
effectiveness of each layer as an ETM. The
perovskite layer (i-layer) serves as the absorber
Additionally, (Spiro-
OMeTAD, NiO, Cu20, and CuO) are used
individually as HTMs. Table 1 presents the material

layer. p-type materials

characteristics for each layer as reported in
(16299 The total defect

optimization technique is utilized to detect and

publications density

maintain the Nt of the previous two layers and adjust
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the N; of the third layer. Firstly, the N; of ETL was
altered from (10'3 cm™) to (10%° cm™), and the total
defect density of the two other layers (perovskite
(103 cm™) and HTL (10" cm™)) remained fixed. In
the second phase, the total defect density of
perovskite ranged from (10° cm?3) to (103cm)
while the total defect density of the two other layers
(ETL (10 cm™) and HTL (10 cm?)) remained

constant. Furthermore, according to the most
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effective, the total defect density of HTL were
observed, ranging from (10'° cm™) to (10" cm?)
while the total number of defects in the other two
layers (ETL (10'* cm™) and perovskite (107 cm™))
remained stable. Finally, using the model results,
the ETL (1015 cm-3), the absorbing layer (109 cm-
3), and the HTL (1014 cm-3) were kept at their

original total defect densities.

Table 1: Input parameters for the proposed ETL, perovskite, and HTL materials

Parameters FTO 1GZ0 SnO2 TiO2 ZnO CH;NH;SnCl3 Spiro- NiO Cu20 CuO
OMeTAD
Thickness(nm) 400 35 35 35 35 900 350 350 350 350
Eq (eV) 3.5 3.05 3.6 3.2 33 2.15 3.17 3.8 2.17 1.48
x (eV) 4 4.16 4 4.1 4 3.71 2.05 2.1 3 4.07
& 9 10 9 9 9 3.5 3 10.7 7.1 18.1
Ne (cm™) 2.2x10 | 5x10' | 2.2x10'7 | 2.2x10'® | 2.2x10'8 1x10'8 2x10%° 2x10" 2x10"7 | 2.1x10"
Ny (cm?) 1.8x10" | 5x10'® | 2.2X10'" | 1.8x10" | 1.9x10" 1x10" 2x10%° 1x10" 1.1x10" | 5.5x10"
n (cm/Vs) 20 15 20 5%102 100 1.6 2.1x10° 12 200 100
¢ thermal-velocity 1x107 1x107 1x107 1x107 1x107 1x10° 1x107 1x107 1x107 1x107
(cm.s™)
h* thermal- 1x107 1x107 1x107 1x107 1x107 1x10° 1x107 1x107 1x107 1x107
velocity
(cm.s")
p (cm/Vs) 10 0.1 10 5%107 25 1.6 2.16x103 2 80 0.1
Na (em™) 1x10" | 1x10"7 | 1x10"7 1x10" 1x10' 3.2x10'8 0 0 0 0
Na (cm™) 0 0.0 0.0 0 0 0 2x10" 1.6x10™ | 1x10" 1x10'°
Ni (em™) 1x10™ | 1x10" 1x10'% 1x10'% 1x10'3 1x10" 1x10 1 x10" 1x10' 1x10'
RESULTS AND DISCUSSION Cell parameters | TiO2 | SnO2 | ZnO 1GZ0O
Simulation of different inorganic metals ETLs: Vee (V) . 157 | 158 | 1.58 | 153
Perovskite and Spiro-OMeTAD were used I (mAfem 479 | 728 | 710 | 2.33
. . . FF (%) 87.67 | 88.00 | 87.96 | 87.27
independently, with thicknesses of 900 nm and 350 TR sa0 T1019 (592 132

nm, respectively. Table 2 reports the results of the
numerical simulations. It is clear the cell-based
SnO> layer, as compared to others, has the highest
short circuit current density (Jsc) and m, which is
(7.28 mA/cm?) and (10.19 %), respectively. In
contrast, the fill factor (FF) of the cell-based SnO2
layer (88%) was slightly higher than that of the cell-
based TiO2 layer (87.67%). Furthermore, the V. of
SnO2-based cell (1.58 V) is slightly increased than
that of cell-based IGZO (1.53 V), TiO2 (1.57 V), and
ZnO (1.58 V). That is because the band gap energy
of SnOs; is larger than that of ZnO (3.5 eV vs. 3.3
V) (203030,
Table 2: Effects of ETLs on the output parameters of
the n—i—p PSC

58

The illuminated J-V features of cell-based (IGZO,
Sn0O,, TiO,, and ZnO) with a (35 nm) thickness are
shown in Figure 2a. The SnO, layer is more
transparent than the IGZO, TiO», and ZnO layers,
light the
perovskite layer. 2. This indicates that SnO2-based

thereby facilitating absorption by
cells exhibit slightly better cell parameters than
those based on their layers. Furthermore, both SnO,
ZnO  exhibit

improvements, with values of 10.19% and 9.92%,

and substantial  efficiency
respectively. The increased quantum efficiency
(QE) of SnO, is based on the cell, attributed to the

quantum size effect (Figure 2b).
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Fig. 2: (a) illuminated J-V and (b) different QE of different configuration of various ETL of the same
thicknesses using Spiro-OMeTAD as HTL

Simulation of various inorganic metal HTLs

In simulations, the same parameters as in Table 1
are used to analyze the impact of different HTLs
(Spiro-OMeTAD, NiO, Cu20, and CuO) on PCE
across a variety of solar cell-based devices. Figure 3
revealed that Spiro-OMeTAD has a higher
(10.19%) than Cu20, CuO, and NiO (9.96%,

QE (%)

8.79%, and 8.66%, respectively). Using Spiro-
OMeTAD as the HTL increased the 1 in perovskite
solar cells as demonstrated by G%. As well as, G4,
also stated that the stable Spiro-OMeTAD produces
a typical HTL as the top layer of a perovskite solar

cell.
100 b ——SproOMSTAD
—Nio
—Cu,0
80+ —Cu0
a0
40 4
2

0.2 0.4 0.6

T
0.8 1.0 12 14 16

v

0.0

T T T
300 400 500 600 700

Wavelength (nm)

Fig. 3: (a): illuminated J-V and, (b): QE of different-configuration using of various HTL and SnO: as ETL.

SnO» and Spiro-OMeTAD serve as the ETL and
HTL, respectively, in the n-i-p configuration. They
are (35 nm) thick for SnO,, (350 nm) thick for
Spiro-OMeTAD, and (900 nm) thick for methyl
ammonium tin chloride (CH3NH3SnCl3). Under
AM (1.5 G), the output parameters are shown in
Table 3.

Table 3: Effects of HTL on the output parameters of the

n-i-p PSC
Cell parameters | Spiro-OMeTAD | NiO | Cu,0 | CuO
Vo (V) 1.58 1.66 | 1.58 | 0.61
Js (mA/cm?) 7.28 7.19 | 7.39 | 19.58
FF (%) 88.00 7226 | 85.02 | 73.34

59

| n (%) | 10.19 | 8.66 | 9.96 | 8.79 |
Effect of total Defect Density of Tin oxide

The N; influences the performance of photovoltaic
defects the

in

solar cells because accelerate

recombination of photo-generated carriers
perovskite solar cells, leading to increased
recombination. We have investigated the impact of
the N; of SnO» on the performance of perovskite
solar cells by varying the number from (10'3 cm)
to (10%° ¢cm3). Figure 4 presents the simulation
results. The rise in total defect density to values

higher than (10'3 cm?) for SnO; leads to a reduction
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in PV parameters. The result agreed with ©%), which
revealed that the presence of recombination centers

resulting from the defect reduces the device's open-
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circuit voltage (Voc) by reducing shunt resistance.
This recombination reduces the quasi-Fermi level

splitting in the device, which directly lowers V.

la
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Fig. 4: Varying (a) n, (b) Jsc, (¢) Voc and (d) FF with total defect density of tine oxide

Effect of total Defect Density of absorbers layer
Figure 5 shows a numerical analysis of suggested
Sn-based perovskite solar cell response to variations
in total defect density of absorber layer, which
the cell
efficiency. The total defect density (N;) of the

directly influence perovskite solar

absorbers layer varies from (10° cm=) to (10'3 cm™3).

The output parameters decrease from 1 (13.68 % to

10.19 %), Voc (1.6 V to 1.58 V), Jc (9.65 mA/cm? to
7.28 mA/cm?) and FF (88.38 % to 88 %) as the
defect density exceeds (10°cm™3) leading to an
increase in recombination rates. Furthermore, the
effectiveness decreases as the quantity of total
defect density increases, mostly lead to a decrease

in the distance that the charge-carriers travel G¢37),
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Fig. 5: Varying (a) n, (b) Jsc, (¢) Voc and (d) FF with N¢ in absorber layer

Effect of total Defect Density on HTLs

Defects in solar cells are undesirable because they
adversely affect both efficiency and stability. The
total N¢of the Spiro-OMeTAD is within the range of
(10" ¢cm3) to (10" ecm™), as suggested. The results
depicted in Figure 6 demonstrate an increase in
defect density for Spiro-OMeTAD, leading to
slightly decreasing output PV parameters as total N;
were larger than (10'*cm). While, the performance

of solar cells does decline as the defect density

61

increases, the overall impact on the results was not
substantial. A higher defect density leads to an
increased recombination rate, thereby reducing
carrier lifetime. The performance of solar cells is
highly sensitive to defect density. While low defect
levels have minimal impact, increasing defect
density exponentially accelerates recombination
and efficiency loss. Optimizing material quality and
defect management is key to sustaining high-

performance solar cells.
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Figure 7 illuminates J-V characteristics of the final
model of an optimized cell which consist an ETL,
absorbers, and HTL layers. Each of the layers had a
total defect density of (10'*cm3, 107 cm™, and 10°
cm), respectively. The efficiency was (13.68 %) as
illustrated in Table 4. As the overall defect density
of the absorber layer increases, Jsc decreases. This
is because an increased defect density results in a
higher recombination rate, which in turn affects
carrier lifetimes. ¢%3%. Shockley-Read Hall (SRH)
recombination occurs due to defects in the energy

band gap, leading to a decrease in efficiency “°).

04

-2 4

-4 4

-6

J (ma/em?)

-8

-10 4

T T T T T T T T
00 02 04 06 08 10 12 14 16
ViV)

Fig. 7: Illuminated J-V characteristics of optimized
(FTO/glass/ SnO2/ CH3NH3Snl3/Spiro OMe-TAD/ Au)

solar cell

Table 4: Final device performance (FTO/glass/ SnO2/
CH:3NH3SnCls/Spiro OMe-TAD/Au) on the basis of
optimized parameters

Vo | 1.60 (Volt)
J 9.65 mA/cm?

sc

FF | 88.34 %
H | 13.68%

CONCLUSION

This study employed several n-i-p configurations to
identify more appropriate ETL and HTL for the
lead-free absorbent layer (CH3NH3SnClz). The
investigation of IGZO, SnO», TiO, and ZnO as ETL
-layers and Spiro-OMeTAD, NiO, Cu,0, and CuO
as HTL and tin oxide revealed greater m and is
thought to be suitable for ETLs and a good HTL is
Spiro-OMeTAD. The results showed that the
(SnO,/CH3NH3SnCls/Spiro-OMeTAD/gold)

structure of the perovskite solar cell is the most
efficient configuration, with output parameters of
(Voc = 1.58 V, Jsc = 7.28 mA/cm2, FF = 88.00%,
and n = 10.19%). Additionally, the total defect
densities of SnO,, CH3;NH3SnCls, and Spiro-
OMeTAD are optimized, and the results suggest
that SnO; (10" cm), perovskite layer (10° cm
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%), and Spiro-OMeTAD layer (10'* cm™) to attain
high performance of perovskite solar cells: (Voc=1.6
V, J5c=9.65 mA/cm?, FF=88.34 %, and n=13.68 %).
The absorber layer is more affected by the N; than
the two other layers (SnO; and Spiro-OMeTAD).
The

environmentally

simulation results used to create

friendly, high-efficiency
perovskite solar cells.
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