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ABSTRACT 

Hearing loss is a growing public health concern with serious implications for an 

individual's quality of life. This paper proposes a mathematical model that describes 

the dynamics of the spread of mumps and the associated risk of hearing loss caused 

by mumps infection. The model incorporates key epidemiological factors and 

considers the role of vaccination and quarantine as control measures. Mathematical 

analysis of the model was carried out to ensure positivity and boundedness of 

solutions over time. The model exhibits two steady states: a mumps-free steady state 

and a mumps-endemic steady state. Stability and sensitivity analyses show the 

effectiveness of quarantine and administering vaccine in minimizing the spread of 

mumps and consequently mitigating hearing loss. Though, quarantine has high 

significant impact on the dynamics with first dose of vaccination, the outcome after 

the second dose of vaccination is far better. In addition, the findings emphasize the 

importance of certain parameters in shaping the disease dynamics and offer guidance 

on effective intervention strategies. The study underscores the role of vaccination and 

quarantine in mitigating the impact of mumps-induced hearing loss. 
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 وعلوم الحاسوب، جامعة ولاية بينوي، ماكوردي، نيجيريا قسم الرياضيات  2

 ، أربيل، إقليم كردستان، العراق  (UKH)وحدة الرياضيات، كلية العلوم والهندسة، جامعة كردستان هولير 3

 

 الملخص 

نموذجاً رياضياً يصف ديناميكيات فقدان السمع هو مصدر قلق متزايد للصحة العامة له آثار خطيرة على جودة حياة الفرد. تقترح هذه الورقة  

انتشار النكاف والمخاطر المرتبطة به من فقدان السمع الناجم عن عدوى النكاف. يتضمن النموذج عوامل وبائية رئيسية ويأخذ في الاعتبار  

مع مرور الوقت. يُظهر  دور التطعيم والحجر الصحي كإجراءات للسيطرة. تم إجراء تحليل رياضي للنموذج لضمان إيجابية وتقييد الحلول  

حجر  النموذج حالتين مستقرتين: حالة مستقرة خالية من النكاف وحالة مستقرة متوطنة بالنكاف. تُظهر تحليلات الاستقرار والحساسية فعالية ال

تأثير كبير على    الصحي وإعطاء اللقاح في تقليل انتشار النكاف وبالتالي التخفيف من فقدان السمع. على الرغم من أن الحجر الصحي له 

تائج على  الديناميكيات مع الجرعة الأولى من التطعيم، إلا أن النتيجة بعد الجرعة الثانية من التطعيم أفضل بكثير. بالإضافة إلى ذلك، تؤكد الن 

ى دور التطعيم والحجر  أهمية بعض المعايير في تشكيل ديناميكيات المرض وتقدم إرشادات حول استراتيجيات التدخل الفعالة. تؤكد الدراسة عل

 .الصحي في التخفيف من تأثير فقدان السمع الناجم عن النكاف

INTRODUCTION 

Mumps is an infection of the salivary glands caused 

by a virus belonging to the paramyxovirus group. 

This virus is an RNA virus that spreads through 

direct contact and droplets. Mumps typically affects 

children and can lead to acute respiratory infections. 

Early symptoms include fever, muscle pain, 

headaches, and fatigue. Mumps is usually followed 

by painful swelling of one or both parotid glands (1).  

According to (2), mumps symptoms in adults are 

often more severe than in children. Severe 

symptoms can result in complications such as 

aseptic meningitis, encephalitis, orchitis, oophoritis, 

and, in severe cases, infections of the brain cover 

(15%) , pancreatitis (4%) , permanent deafness, 

and painful testicular swelling that rarely causes 

infertility. However, individuals who recover from 

this viral infection usually acquire lifelong 

immunity, and the chances of reinfection are 

generally low (2, 3). 

Prevention of mumps spread is achieved through the 

MMR (Measles, Mumps, Rubella) vaccine, 

administered to children at ages 12 − 15 months 

for the first dose and 4 − 6 years for the second 

dose. However, the MMR vaccine has limited 

effectiveness in controlling mumps transmission (1). 

Additionally, ongoing genetic mutations of the virus 

and individual movement from one region to 

another contribute to the spread, leading to 

epidemics in certain areas. An example is the 

situation in Xiamen city and Fujian province, China, 

where mumps affects around 21 individuals out of 

100 in the total population. Mumps epidemics are 

common throughout the year near the equator, while 

in regions further north and south of the equator, 

they often occur during winter and spring, resulting 

in approximately one in ten thousand infected 

individuals dying  (4-6). This makes mumps a 

dangerous disease that can cause mass fatalities if 
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its spread is not effectively controlled. Hence, 

several studies have been conducted to address 

mumps spread, including (4), which discusses 

mathematical modeling of mumps vaccine failure in 

Jiangsu Province, China. This research divides the 

infected population into two sub populations, 

assuming no deaths due to mumps. The findings 

recommend health program planners to implement 

more preventive interventions during periods of 

higher infection risk. Additionally, The study (7) 

developed a dynamic transmission model to assess 

the cost-effectiveness of routine one- and two-dose 

mumps vaccination programs in Japan. Both 

programs were found to be cost-effective and saved 

quality-adjusted life years (QALYs) compared to 

the current program. The two-dose vaccination 

programs was consistently more cost-effective and 

QALY-saving than the one-dose program 

throughout the study period, confirming its 

superiority. This analysis provides valuable insights 

for policy decisions regarding mumps vaccination 

not only in Japan but also in other countries where 

the mumps vaccine is not part of the national 

immunization program. 

Researchers in (8) discusses seasonal mumps spread 

in China, defining classes of individuals vaccinated 

with MMR. The analysis suggests that vaccination 

rates and vaccine effectiveness play crucial roles in 

mumps spread. The study proposes increasing 

vaccine coverage and implementing two doses of 

MMR vaccine in Mainland China. Another study by 

(4) explores the correlation between mumps and 

meteorological factors in Xiamen, China. It 

distinguishes classes of individuals exhibiting mild 

and severe infection symptoms. The conclusion is 

that a relatively high transmission rate in Xiamen 

leads to sustained mumps epidemics. 

Meteorological factors, especially air temperature 

and relative humidity, are closely related to mumps. 

Furthermore, another study (9) uses a density-

dependent SEIR model, asserting that mumps cases 

increase with the city’s size, indicating density-

dependent transmission. The researchers gathers 

data from various American cities between 1923-

1932, concluding that mumps cases most frequently 

increase in March, with higher transmission than 

average from December to April, correlating with 

weekly births. The results of the study emphasize 

the importance of long-term infectious disease 

survey data, providing insights into future studies on 

mumps resurgence (9). Another study (6) examined 

the spread of mumps by using the SIQR model 

dividing the population into four classes and 

assuming that deaths from mumps were caused by 

complications with other diseases. There is also a 

quarantine class for mumps-infected individuals. 

Some Mathematical models have been used to study 

the dynamics of hearing loss caused by hazardous 

exposure to noise and hearing loss can also be 

caused by hereditary factors, birth complicates, 

certain viral diseases, chronic ear infections, the use 

of certain medicines, excessive noise exposure, and 

aging, which is a major worldwide health issue (10, 

11). According to the World Health Organization 

(WHO), more than 430 million people, or 5% of 

the world’s population, require rehabilitation to 

address their "disabling" hearing loss and 34 million 

of these are children. By 2050, it is estimated that 

this number will increase to more than 700 million 

individuals or one out of every 10 people (12). 

Hearing loss is linked to a variety of infections and 

viral diseases, such as mumps. Mathematical 

models have been formulated to analysed the 

function and dysfunction of the inner ear by using 

partial differential equation while other researchers 

used SIR model to describe the dynamics of hearing 

loss caused by viral Infection such as mumps 

(contagion factor) and social factors (10, 11). The 

research in (13)analyzes the consequences of mumps 

infection, specifically hearing loss, using the 

Caputo-Fabrizio fractional model. Additionally, 

some researchers in (14) proposes an SLR model, 

with L representing hearing impairment due to 

mumps virus. Their model aim to investigate the 
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impact of noise on mumps virus growth using 

Fourier transformation. They conclude that 

diffusive effects on the system can influence better 

infection control, intensity, spread, and treatment, 

leading to improved recovery rates.  

Recent studies highlight the persistent challenge of 

mumps outbreaks despite vaccination efforts, 

particularly among children and young adults in 

China. Epidemiological analyses have shown that a 

significant proportion of mumps cases occur in 

vaccinated individuals, emphasizing the need for 

enhanced immunization strategies and 

surveillance(15). Additionally, mathematical models 

incorporating treatment delays have provided 

valuable insights into the disease's progression and 

control. Delayed treatment can significantly impact 

infection dynamics, influencing stability, periodic 

outbreaks, and control strategies (16). These findings 

underscore the importance of considering delay 

effects in mathematical modeling to optimize 

intervention measures and reduce the burden of 

mumps-related complications. 

Based on previous studies, there is no sufficient 

research yet focusing on mumps spread with 

quarantined population and the advance effect on 

infected individuals who are experiencing hearing 

loss due to the mumps virus. This research studies 

the spread of mumps by using the 𝑆𝐼𝑄𝐻𝑅 model 

with five population classes. Comparing our model 

with (6), we assume there is no deaths due to mumps 

and in addition, those who are mildly infected with 

the virus are not quarantined, but those who are 

severely infected are quarantined, and a small 

proportion experienceing hearing loss, especially on 

one side. Furthermore, our model consider the effect 

of first and second dose of vaccine and those who 

recover develops life-long immunity. 

 

 

MATHEMATICAL MODEL 

Model description 

In this section, we present a new mathematical 

model by using ordinary differential equations to 

comprehend the dynamics of the mumps virus, 

known to be associated with hearing loss. Our 

model classifies the population into five 

compartments: 𝑆  represents the number of 

susceptible individuals, 𝐼  corresponds to the 

number of individuals infected with the mumps 

virus, 𝐻  indicates the number of infected 

individuals experiencing hearing loss, 𝑄 accounts 

for those individuals under quarantine due to 

infection, and 𝑅  quantifies the number of 

individuals recovering from the mumps virus at time 

𝑡. The interactions among these five compartments 

are depicted in Fig. 1.  
 

 

Fig. 1: Diagram of mumps virus. 

  

 Below is the equations of the model: 

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽(1 − 𝜏)𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) 

𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝜏)𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇 + 𝜆 + 𝜂)𝐼(𝑡) 

𝑑𝐻

𝑑𝑡
= 𝛼𝐼(𝑡) − (𝜖 + 𝜇 + 𝛿)𝐻(𝑡)          (1) 

𝑑𝑄

𝑑𝑡
= 𝜂𝐼(𝑡) − (𝜇 + 𝜈)𝑄(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝜆𝐼(𝑡) + 𝜈𝑄(𝑡) + 𝜖𝐻(𝑡) − 𝜇𝑅(𝑡). 

With the initial condition: 𝑆(0) > 0, 𝐼(0) ≥

0,𝐻(0) ≥ 0,𝑄(0) ≥ 0, 𝑅(0) ≥ 0, 

𝜏 ≥ 0, 𝑡 ∈ [−𝜏, 0]  

Where 𝜏 = 𝜏1 + 𝜏2. 
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Table 1: Description of the model parameters. 

Parameter Parameter’s description 

𝑏  Recruitment rate of the population  

𝛽  The transmission rate of mumps virus 

𝛼  Rate of hearing loss as a result of mumps virus  

𝜇  Natural death rate  

𝛿  The rate of death emanating from falls or accidents as a result of hearing loss  

𝜖  Recovery rate of mumps virus after it cause hearing loss  

𝜆  Recovery rate  

𝜂  Quarantine rate of individuals who have been infected with mumps 

𝜈  Recovery rate of quarantined individuals 

𝜏  Represent administration of vaccinated individuals 
 

Also defining the following equations: 

 𝑁 = 𝑆 + 𝐼 + 𝐻 + 𝑄 + 𝑅,     (2) 

then the derivative of 𝑁  is given below with 

respect to t: 
𝑑

𝑑𝑡
(𝑆 + 𝐼 + 𝐻 + 𝑄 + 𝑅) = 𝑏 − 𝜇𝑁 − 𝜆𝐼 − 𝛿𝐻 ≥ 0, 

𝑑

𝑑𝑡
(𝑆 + 𝐼 + 𝐻 + 𝑄 + 𝑅) ≤ 𝑏 − 𝜇𝑁, 

It follows that: 

lim
𝜄→∞

𝑆𝑢𝑝(𝑆 + 𝐼 + 𝐻 + 𝑄 + 𝑅) ≤
𝑏

𝜇
. 

Therefore, the feasible region of the system (1) is 

given by: 

Γ = {(  𝑆, 𝐼, 𝐻, 𝑄, 𝑅): 𝑆 + 𝐼 + 𝐻 + 𝑄 + 𝑅 ≤
𝑏

𝜇
,

𝑆(0) > 0, 𝐼(0) ≥ 0, 𝐻(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥

0}. 

Basic reproduction number 

 It is an effective parameters to predict how 

different measures affect the way the disease 

transmits among the population, most of the time 

denoted by 𝑅0. By using the next generation matrix 

we discuss the basic reproduction number of the 

system (1). 

𝐿𝑒𝑡 𝑥𝐼 = [
𝐼
𝐻
𝑄

] , 𝑥𝑁 = [
𝑆
𝑅
] 𝑎𝑛𝑑

𝑑

𝑑𝑡
[
𝐼
𝐻
𝑄

] = [
𝛽(1 − 𝜏)𝑆𝐼
0
0

] −

[

(𝛼 + 𝜇 + 𝜆 + 𝜂)𝐼

−𝛼𝐼 + (𝜖 + 𝜇 + 𝛿)𝐻

−𝜂𝐼 + (𝜇 + 𝜈)𝑄

] 𝑡ℎ𝑒𝑛 𝐹(𝑆, 𝐼, 𝐻, 𝑄, 𝑅) =

[
𝛽(1 − 𝜏)𝑆𝐼
0
0

],  

𝑉(𝑆, 𝐼, 𝐻, 𝑄, 𝑅) = [

(𝛼 + 𝜇 + 𝜆 + 𝜂)𝐼

−𝛼𝐼 + (𝜖 + 𝜇 + 𝛿)𝐻

−𝜂𝐼 + (𝜇 + 𝜈)𝑄

],  

 

where F and V stands for first and second part of 

infected compartments. 

It is clear that the free disease equilibrium point  

of the system (1) is equal to      

 (
𝑏

𝜇
, 0,0,0,0) . Now, we define the Jacobian 

matrices Z and W as follows: 

𝑍 = (
𝜕𝐹

𝜕(𝐼, 𝐻, 𝑄)
)|

(
𝑏
𝜇
,0,0,0,0)

=
𝜕

𝜕(𝐼, 𝐻, 𝑄)
[
𝛽(1 − 𝜏)𝑆𝐼
0
0

]

= [
𝛽(1 − 𝜏)𝑆 0 0
0 0 0
0 0 0

]

= [

𝛽(1 − 𝜏)𝑏

𝜇
0 0

0 0 0
0 0 0

], 

𝑊 = (
𝜕𝑉

𝜕(𝐼, 𝐻, 𝑄)
)|

(
𝑏
𝜇
,0,0,0,0)

= [

𝛼 + 𝜇 + 𝜆 + 𝜂 0 0
−𝛼 𝜖 + 𝜇 + 𝛿 0
−𝜂 0 𝜇 + 𝜈

]   𝑎𝑛𝑑 

𝑊−1 =

[
 
 
 
 

1

(𝛼+𝜇+𝜆+𝜂)
0 0

1

(𝛼+𝜇+𝜆+𝜂)
(𝜖 + 𝜇 + 𝛿)

1

𝜖+𝜇+𝛿
0

𝜂

(𝜇+𝜈)(𝛼+𝜇+𝜆+𝜂)
0

1

𝜇+𝜈]
 
 
 
 

 therefore, 

𝑍𝑊−1 =

[
 
 
 
 

𝛽(1−𝜏)𝑏

𝜇(𝛼+𝜇+𝜆+𝜂)
0 0

𝛽𝛼𝑏

𝜇(𝛼+𝜇+𝜆+𝜂)
(𝜖 + 𝜇 + 𝛿) 0 0

𝛽(1−𝜏)𝑏𝜂

𝜇(𝜇+𝜈)(𝛼+𝜇+𝜆+𝜂)
0 0]

 
 
 
 

. 

 The reproduction number is given by the spectral 

radius of 𝑍𝑊−1 that is 

 𝑅0 =
𝛽(1−𝜏)𝑏

𝜇(𝛼+𝜇+𝜆+𝜂)
. 

STABILITY ANALYSIS FOR MUMPS  

Disease-free steady state 

The case where no individuals are infected to 
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mumps virus, disease-free steady state exist that is, 

𝐼 = 0 then 𝐻 = 0, 𝑄 = 0 and 𝑅 = 0, therefore 

from 

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽(1 − 𝜏)𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) = 0, 

⇒ 𝑏 − 𝜇𝑆0 = 0 ⇒ 𝑆0 =
𝑏

𝜇
. 

Thus the system (1) has a disease-free steady state 

𝐸0 = (
𝑏

𝜇
, 0,0,0,0). 

To exterminate the local stability of the disease-free 

steady state 𝐸0 = (
𝑏

𝜇
, 0,0,0,0)  by taking the 

Jacobian matrix in system (1) and get
 

𝐽(𝑆, 𝐼, 𝐻, 𝑄, 𝑅) =

[
 
 
 
 
−𝛽(1 − 𝜏)𝐼 − 𝜇 −𝛽(1 − 𝜏)𝑆 0 0 0

𝛽(1 − 𝜏)𝐼 𝛽(1 − 𝜏)𝑆 − 𝜂 − 𝜆 − 𝜇 − 𝛼 0 0 0

0 𝛼 −(𝛿 + 𝜖 + 𝜇) 0 0
0 𝜂 0 −(𝜇 + 𝜈) 0

0 𝜆 𝜖 𝜈 −𝜇]
 
 
 
 

 

 

Theorm 1. If 𝑅0 < 1, then the disease-free steady 

state, 𝐸0  is locally asymptotically stable and 

unstable when 𝑅0 > 1.  

Proof. The local stability of the steady states can be 

determined from the Jacobian matrix. This implies 

that the Jacobian matrix for the disease-free steady 

state is given by 

𝐽(𝐸0) =

[
 
 
 
 
 
 −𝜇

−𝑏𝛽(1−𝜏)

𝜇
0 0 0

0
𝑏𝛽(1−𝜏)

𝜇
− 𝜂 − 𝜆 − 𝜇 − 𝛼 0 0 0

0 𝛼 −(𝛿 + 𝜖 + 𝜇) 0 0
0 𝜂 0 −(𝜇 + 𝜈) 0
0 𝜆 𝜖 𝜈 −𝜇]

 
 
 
 
 
 

  

 performing some row operation to find the 

eigenvalues give 

𝑅1 =
𝑏𝛽(1 − 𝜏)

𝑏𝛽(1 − 𝜏) − 𝜂𝜇 − 𝜆𝜇 − 𝜇2 − 𝛼𝜇
𝑅2 + 𝑅1 

therefore, 

𝐽(𝐸0) =

[
 
 
 
 
 
−𝜇 0 0 0 0

0
𝑏𝛽(1−𝜏)

𝜇
− 𝜂 − 𝜆 − 𝜇 − 𝛼 0 0 0

0 𝛼 −(𝛿 + 𝜖 + 𝜇) 0 0
0 𝜂 0 −(𝜇 + 𝜈) 0
0 𝜆 𝜖 𝜈 −𝜇]

 
 
 
 
 

  

and the eigenvalues are it diagonal elements since 

our matrix is triangular. 

𝜆1, 𝜆2 = −𝜇 < 0,

𝜆3 = −(𝛿 + 𝜖 + 𝜇) < 0,

𝜆4 = −(𝜇 + 𝜈) < 0,

𝜆5 =
𝑏𝛽(1−𝜏)

𝜇
− 𝜂 − 𝜆 − 𝜇 − 𝛼

      =
𝑏𝛽(1−𝜏)

𝜇
− (𝜂 + 𝜆 + 𝜇 + 𝛼)

      =
𝑏𝛽(1−𝜏)

𝜇(𝜂+𝜆+𝜇+𝛼)
(𝜂 + 𝜆 + 𝜇 + 𝛼) − (𝜂 + 𝜆 + 𝜇 + 𝛼)

      = 𝑅0(𝜂 + 𝜆 + 𝜇 + 𝛼) − (𝜂 + 𝜆 + 𝜇 + 𝛼)

          = (𝜂 + 𝜆 + 𝜇 + 𝛼)(𝑅0 − 1) < 0 if 𝑅0 < 1.

  

Since all eigenvalues are negative when 𝑅0 < 1. 

Hence, the disease-free steady state, 𝐸0 is locally 

asymptotically stable if 𝑅0 < 1 and unstable when 

𝑅0 > 1.  

Mumps-Endemic steady state  

Case 1: When 𝜏1 = 0  then 𝜏2 = 0  therefor,𝜏 =

0. 

Aside of the disease-free steady state, the system (1) 

has an endemic steady state, 𝐸∗ when individuals 

are infected to mumps virus. The endemic steady 

state is a positive fixed point solution where the 

disease still exist in the population. Defining 𝐸∗ =

(𝑆∗, 𝐼∗, 𝐻∗, 𝑄∗, 𝑅∗) as the endemic steady state of 

the system (1) give the followings: 

𝑆∗ =
𝑎1

𝛽(1−𝜏)
, 𝐼∗ =

𝑎2

𝛽(1−𝜏)𝑎1
, 

𝐻∗ =
𝛼𝑎2

𝛽(1−𝜏)𝑎1𝑎3
, 𝑄∗ =

𝜂𝑎2

𝛽(1−𝜏)(𝜇+𝜈)𝑎1
, 

𝑅∗ =
1

𝛽(1−𝜏)𝜇(𝜇+𝜈)𝑎1𝑎3
[𝑎2(𝜆𝜇

2 + 𝛼𝜖𝜇 + 𝛼𝜖𝜈 +

𝛿𝜂𝜈 + 𝜖𝜂𝜈 + 𝛿𝜆𝜇  

+𝛿𝜆𝜈 + 𝜖𝜆𝜇 + 𝜖𝜆𝜈 + 𝜂𝜇𝜈 + 𝜆𝜇𝜈)], 

where:  

𝑎1 = 𝛼 + 𝜂 + 𝜆 + 𝜇,

𝑎2 = 𝑏𝛽(1 − 𝜏) − 𝛼𝜇 − 𝜂𝜇 − 𝜆𝜇 − 𝜇2,

𝑎3 = 𝛿 + 𝜖 + 𝜇.

  

Existence of Endemic Steady States 

In this section, we will show that when 𝑅0 > 1 the 

endemic steady state is always exist (17, 18).  

Lemma 1. If 𝑅0 > 1 then the endemic steady state 

𝐸∗ is exist   

Proof. The endemic steady state 𝐸∗ =

(𝑆∗, 𝐼∗, 𝐻∗, 𝑄∗, 𝑅∗)  which have been found in 
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previous section  

𝑆∗ =
𝑎1

𝛽(1−𝜏)
, 𝐼∗ =

𝑎2

𝛽(1−𝜏)𝑎1
=

𝑏𝛽(1−𝜏)−𝜇𝑎1

𝛽(1−𝜏)𝑎1
=

𝑏−𝜇𝑆∗

𝛽(1−𝜏)𝑆∗ .  

Now, we have to prove that 𝑏 − 𝜇𝑆∗ > 0  when 

𝑅0 > 1 

𝑏 − 𝜇𝑆∗ = 𝑏 − 𝜇(
𝑎1

𝛽(1−𝜏)
)

=
𝛽(1−𝜏)𝑏

𝛽(1−𝜏)
− 𝜇(

𝑎1

𝛽(1−𝜏)
)

=

𝛽(1−𝜏)𝑏(𝜇𝑎1)

𝜇𝑎1

𝛽(1−𝜏)
−

𝜇𝑎1

𝛽(1−𝜏)

=
𝜇𝑎1

𝛽(1−𝜏)
𝑅0 −

𝜇𝑎1

𝛽(1−𝜏)
, Since 𝑅0 =

𝛽(1−𝜏)𝑏

𝜇(𝛼+𝜇+𝜆+𝜂)
=

𝛽(1−𝜏)𝑏

𝜇𝑎1

=
𝜇𝑎1

𝛽(1−𝜏)
(𝑅0 − 1).

  

Therefore, when 𝑅0 > 1 it is proven that 𝑆∗ > 0 

which result 𝐼∗ > 0,𝐻∗ > 0,𝑄∗ > 0 𝑎𝑛𝑑 𝑅∗ > 0 , 

so that the endemic steady states exist. 

Theorm 2. If 𝑅0 > 1 , then the disease-endemic 

steady state, 𝐸∗ is locally asymptotically stable and 

does not exist when 𝑅0 < 1.   

Proof. The Jacobian matrix for the endemic 

equilibrium is given by 

𝐽(𝐸∗) =

[
 
 
 
 
 
 
−𝑏𝛽(1−𝜏)

𝑎1
−𝑎1 0 0 0

𝑎2

𝑎1
0 0 0 0

0 𝛼 −𝑎3 0 0
0 𝜂 0 −(𝜇 + 𝜈) 0
0 𝜆 𝜖 𝜈 −𝜇]

 
 
 
 
 
 

. 

 

Therefore, whose eigenvalues are the followings. 

𝜆1 = −𝑎3 < 0,

𝜆2 = −𝜇 < 0,

𝜆3 = −𝜇 − 𝜈 < 0,

𝜆4 = −(√𝑏2(𝛽(1 − 𝜏))2 − 4𝑎2𝑎1
2 + 𝑏𝛽(1 − 𝜏))/2𝑎1,

𝜆6 = (√𝑏2(𝛽(1 − 𝜏))2 − 4𝑎2𝑎1
2 − 𝑏𝛽(1 − 𝜏))/2𝑎1.

  

Since,  √𝑏2(𝛽(1 − 𝜏))2 = 𝑏𝛽(1 − 𝜏) →

√𝑏2(𝛽(1 − 𝜏))2 − 4𝑎2𝑎1
2 < 𝑏𝛽(1 − 𝜏) . Therefore, 

𝜆5 and 𝜆6 are also negative. 

The endemic state, 𝐸∗ is always stable whenever it 

exists that is when 𝑅0 > 1. 

Sensitivity Analysis  

The objective of sensitivity analysis is to 

qualitatively determine which parameters exert the 

greatest influence on a model’s output. A parameter 

is considered sensitive if small perturbations in its 

value lead to substantial variations in the solutions 

of the corresponding differential equations. To 

conduct sensitivity analysis on a dynamical system, 

we assume the system consists of 𝑚 

compartments, denoted 𝑐𝑖  for 𝑖 = 1,2,… ,𝑚, and 

is governed by 𝑛  parameters 𝑘𝑗  for 𝑗 =

1,2,… , 𝑛. 

Representing the model balanced equations as a 

system of differential equations as follows  (19-

21):  

𝑑𝑐𝑖

𝑑𝑡
= 𝑓𝑖(𝑐, 𝑘)  

where 𝑐 ∈ ℝ𝑚  and 𝑘 ∈ ℝ𝑛 . Non-normalization, 

half-normalization and full-normalization are 

techniques to calculate sensitivity analysis of the 

model. 

 Non-normalization is given by:  

𝑆𝑖𝑗 =
𝜕𝑐𝑖(𝑡)

𝜕𝑘𝑗
. 

 Half-normalization is given by:  

𝑆𝑖𝑗 = (
1

𝑐𝑖(𝑡)
) (

𝜕𝑐𝑖(𝑡)

𝜕𝑘𝑗
). 

 

 Full-normalization is given by:  

𝑆𝑖𝑗 = (
𝑘𝑗

𝑐𝑖(𝑡)
) (

𝜕𝑐𝑖(𝑡)

𝜕𝑘𝑗
). 

Where 𝑆𝑖𝑗 is the time-dependent sensitivities of 𝑐𝑖 

with respect to each parameter value 𝑘𝑗. 

The following are the parameter values used in the 

sensitivity analysis and simulation. 
 

Table 2: Parameters value of the model. 

Parameter value Source 

𝑏 0.5 (13) 

𝛽 0.433 (13) 

𝛼 0.005 assumed 

𝜇 0.1 (13) 

𝛿 0.3 assumed 

𝜖 0.1 Assumed 

𝜆 0.117 (13) 

𝜂 0.2 assumed 

𝜈 0.371 (2) 
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Fig. 2: Local sensitivity analysis with non-normalization technique of all variables in computational 

simulations using MATLAB. 

 

 

Fig. 3: Local sensitivity analysis with half-normalization technique of all variables in computational 

simulations using MATLAB with respect to all parameters except of 𝐛, 𝛂 and 𝛍. 
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Fig. 4: Local sensitivity analysis with full-normalization technique of all variables in computational 

simulations using MATLAB with respect to all parameters. 

 

In general, the simulation results indicate that 

several key model compartments exhibit notable 

sensitivity to critical parameters. For instance, the 

susceptible population shows sensitivity to 

parameters 𝛽  and 𝑏 , while demonstrating lower 

sensitivity to 𝛿 and 𝜖 (see Fig. 2). Additionally, 

infected individuals are sensitive to parameters 𝜆, 

𝜂 , 𝛽 , and 𝛼 , whereas infected individuals 

experiencing hearing loss respond primarily to 

parameters 𝛼  and 𝛿  (refer to Fig. 2 and 4). In 

contrast, Fig. 3 reveals that quarantined individuals 

are most sensitive to parameters 𝜂  and 𝜈 , with 

reduced sensitivity to 𝛿 , while recovered 

individuals respond to parameters 𝜆  and 𝜇 , 

showing less sensitivity to 𝛿 and 𝜖 (see Fig. 2). 

These results highlight certain contrasts and 

similarities in the effects of specific parameters 

across model states, analyzed using three distinct 

sensitivity analysis techniques. Based on these 

findings, the non-normalized sensitivity analysis 

technique emerges as more effective in identifying 

critical parameters for this model relative to 

alternative methods (see Fig. 2). 

NUMERICAL STABILITY ANALYSIS AND 

SIMULATIONS 

In this section, MATLAB applications are 

employed to examine the effects of various 

parameters on the stability regions and dynamics of 

the system (1) for both the disease-free and endemic 

steady states. This analysis provides a deeper 

understanding of the results obtained in the previous 

section. To illustrate the stability region of our 

model in Fig. 5, we select the following parameter 

values: 𝑏 = 0.5 , 𝛿 = 0.3 , 𝛼 = 0.005 , 𝜇 = 0.1 , 

𝜈 = 0.371 , 𝜏1 = 0 , 𝜏2 = 0  and 𝜖 = 0.1 . This 

setup enables analysis of stability with respect to 

variations in the exposure rate 𝛽 and the recovery 

rate 𝜆. The results in Fig. 5 (a) and (b) demonstrate 

that increasing the quarantine rate 𝜂 from 0.2 to 

0.9 expands the stability region, highlighting 𝜂 as 

an influential parameter in the model. Furthermore, 

Fig. 5 indicates that an increase in 𝜆 and a decrease 

in 𝛽 similarly expand the stability region around 

the endemic steady state, while the reverse 

conditions produce a contraction of this region. 

We choose the following parameter values to 

illustrate the stability region of our model: 𝑏 = 0.5, 

𝛿 = 0.3 , 𝛼 = 0.005 , 𝜇 = 0.1 , 𝜈 = 0.371 , 𝜂 =

0.2 and 𝜖 = 0.1. In Fig. 5 (c) 𝜏1 > 0 and 𝜏2 = 0, 

whereas in Fig. 5 (d) both 𝜏1 > 0 and 𝜏2 > 0. The 

results demonstrate how vaccination expands the 

stability region compared to Fig. 5, highlighting the 

effectiveness of one and two doses of the mumps 

vaccine in controlling the mumps virus.
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Fig. 5: Stability region of mumps virus: The portions below the curves represent the stable regions, while 

the portion above the curves represent the unstable regions of the model (a) 𝜼 = 𝟎. 𝟐, (b) 𝜼 =

𝟎. 𝟗, (𝐜) 𝐰𝐢𝐭𝐡 𝐟𝐢𝐫𝐬𝐭 𝐝𝐨𝐬𝐞 𝐨𝐟 𝐯𝐚𝐜𝐜𝐢𝐧𝐞  𝐚𝐧𝐝 (𝐝) 𝐰𝐢𝐭𝐡 𝐬𝐞𝐜𝐨𝐧𝐝 𝐝𝐨𝐬𝐞 𝐨𝐟 𝐯𝐚𝐜𝐜𝐢𝐧𝐞. 
   

In Fig.6, the model predicts that mumps will 

ultimately be eradicated from the population. This 

outcome indicates that when 𝑅0 < 1 , conditions 

are unfavorable for sustained mumps transmission. 

Specifically, if the birth rate among susceptible 

individuals is lower than the combined rates of 

recovery, mortality, and quarantine, the prevalence 

of mumps will gradually decline over time. 

Furthermore, the figure illustrates an increase in the 

recovered population as the numbers of infected and 

quarantined individuals decrease, suggesting that 

reducing the infected population and implementing 

timely treatment for quarantined individuals are 

effective measures for expediting recovery. 

Conversely, if 𝑅0 > 1 , mumps will become 

endemic, and infected individuals will persist in the 

population. This implies that if the birth rate is 

higher than the natural death rate and the contact 

rate between mumps-infected and susceptible 

individuals exceeds the combined rates of recovery, 

death, and quarantine, the mumps outbreak will 

continue within the population. In addition, mumps 

can result in sudden, permanent, and usually 

unilateral (one-sided) hearing loss. This condition is 

thought to be caused by inflammation and damage 

to the cochlear structures from the mumps virus. 

The incidence of hearing loss from mumps is 

relatively low see Fig.6 and Fig.7. 
 

 

Fig.6: The dynamics of the model equation for  𝑹𝟎 < 𝟏, 

mumps-free steady state. 
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Fig.7: The dynamics of the model equation for 𝑹𝟎 > 𝟏, 

endemic steady state. 

 

 

Fig. 8: The dynamics of the model equation for mumps 

steady state with first dose vaccination. 

 

 

Fig. 9: The dynamics of the model equation for mumps 

steady state with second dose vaccination. 

 

Fig. 8 and Fig. 9  highlight the effectiveness of the 

two-dose vaccination strategy in controlling 

mumps. While a single dose helps reduce infection 

rates see Fig. 8 , a second dose is much more 

effective in bringing mumps cases close to zero, 

achieving near-complete immunity within the 

population Fig. 9. 

On the other hand, Fig. 10 if the quarantine rate is 

increased, the value of 𝑅0 will decrease, and the 

quarantined population will approach the infected 

population. This indicates that quarantine can 

greatly decrease the transmission of mumps by 

separating infected individuals from those who are 

susceptible, thus reducing potential contact and 

spread. This approach can shorten the length of 

outbreaks and guide the population toward a 

mumps-free or low-level endemic state, particularly 

when used alongside vaccination and other 

preventative measures.  
 

 

Fig. 10: The dynamics of the model equation for 

mumps- endemic steady state when 𝜼 = 𝟎. 𝟕. 

 

Overall, our numerical simulations provide a 

comprehensive assessment of different 

epidemiological scenarios for mumps transmission. 

When 𝑅0 < 1 , the mumps-free equilibrium is 

stable, and the disease eventually disappears, as 

seen in Fig 6. In contrast, when 𝑅0 > 1, the endemic 

equilibrium persists, leading to a continuous 

presence of mumps within the population, as shown 

in Fig. 7. The effectiveness of vaccination is 

evident, as one dose significantly reduces infection 

rates (Fig. 8), while two doses lead to near-

elimination of the disease (Fig.9). Additionally, 

quarantine plays a crucial role in controlling the 

spread, with increased quarantine rates effectively 

reducing transmission and leading to a more stable, 

low-infection state (Fig. 10). These results 
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collectively highlight the importance of vaccination, 

quarantine, and reducing exposure rates in 

managing and ultimately eradicating mumps.   

DISCUSSION 

This study presents a mathematical model of mumps 

virus and its impact on hearing loss using ordinary 

differential equations. The SIHQR model divides 

the population into five compartments: susceptible 

individuals (S), infected individuals (I), individuals 

experiencing hearing loss (H), quarantined 

individuals (Q), and recovered individuals (R). 

Analyzing the model established the existence and 

stability of the mumps steady states. Specifically, 

the mumps-free state was shown to be locally 

asymptotically stable when the basic reproductive 

number is less than one, while the endemic state 

remains stable when the basic reproductive number 

is greater than one. This confirms that the model is 

well-posed and accurately represents the disease 

dynamics. 

Furthermore, the study assesses the role of delay 

treatment in the spread of the disease, a crucial 

aspect often overlooked in previous models. The 

findings emphasize the significance of vaccination 

and quarantine strategies in controlling mumps 

transmission and mitigating complications such as 

hearing loss. The sensitivity analysis highlights the 

impact of critical parameters on the disease 

progression (see Fig. 2– 4), reinforcing the necessity 

of timely interventions. 

From a broader perspective, these results have 

important public health implications. 

Understanding the stability conditions of mumps 

steady states can help policymakers implement 

targeted interventions to control outbreaks. The 

model can also serve as a foundation for further 

studies on optimizing vaccination coverage and 

quarantine measures to prevent long-term 

complications. Ultimately, this research contributes 

to better disease management strategies, improving 

both prevention and treatment outcomes. 
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