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ABSTRACT 

In this research, we introduce a modified direction update formula to improve the descent 

features of iterative optimization, therefore presenting a fresh approach to the Conjugate 

Gradient (CG) method. The proposed method adjusts the search direction at each iteration 

by incorporating gradient and step projections, weighted by inner products between 

gradient and step vectors. The modified HS-CG approach seeks to decrease the 

computational cost often associated with conventional approaches and speed up 

convergence by carefully balancing these projections. Experimental results demonstrate 

that our approach outperforms standard CG algorithms in achieving faster convergence 

on a range of benchmark problems, especially in high-dimensional spaces. This 

enhancement makes the method particularly promising for large-scale optimization 

challenges encountered in fields such as machine learning and engineering design. 
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 التذبذبات في التحسين غير الخطي  لتجنب  :HS-CGتحديث فعال لنظام

 خليل  حيدر عصام

 العراق ، كركوك، كركوك ة، جامعالعلوم   ، كليةالرياضيات قسم 
  

 الملخص 

 .مترافقفي هذا البحث، نقدم صيغة تحديث اتجاه معدلة لتحسين ميزات الانحدار للتحسين التكراري، وبالتالي نقدم نهجًا جديدًا لطريقة التدرج ال

(CG)  بالمنتجات الداخلية بين متجهات    وزونةتضبط الطريقة المقترحة اتجاه البحث في كل تكرار من خلال دمج إسقاطات التدرج والخطوة الم

المعدل إلى تقليل التكلفة الحسابية المرتبطة غالبًا بالطرق التقليدية وتسريع التقارب من خلال موازنة    HS-CGالتدرج والخطوة. يسعى نهج  

القياسية في تحقيق تقارب أسرع في مجموعة من مشاكل    CGهذه الإسقاطات بعناية. تُظهر النتائج التجريبية أن نهجنا يتفوق على خوارزميات  
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المعايير، وخاصة في المساحات عالية الأبعاد. يجعل هذا التحسين الطريقة واعدة بشكل خاص لتحديات التحسين واسعة النطاق التي تواجهها  

 مجالات مثل التعلم الآلي وتصميم الهندسة. 

INTRODUCTION 

Optimization methods play a crucial role in 

numerous applications like machine learning, image 

processing, fluid mechanics, elasticity, seismology, 

medicine, electronic structure approximation, traffic 

management, and telecommunication systems, 

having diverse scientific and industrial problems. 

Due to the nonlinearity of these applications, 

traditional optimization methods are not efficient. 

Therefore, various modified and hybrid 

optimization techniques are designed in order to 

overcome these challenges  (1). With the motivation 

of these, an update classical conjugate gradient 

optimization strategy is followed due to its 

efficiency in solving these challenges. These 

optimization algorithms help in improving the 

convergence rate and computational efficiency of 

the optimization methods of different applications. 

The update formula of the optimization methods is 

very critical as the performance of the optimization 

method is based on the update formula (2). The 

update formula of the optimization methods is a 

crucial factor in balancing different optimization 

features. The main competing factors of the update 

formula are (i) the reduction of function of objective 

in the next iterative point and (ii) the satisfaction of 

some descent-like conditions by the formula. This 

balance is also expressed by diminishing the 

gradient value on the next point, which is important 

for improving the convergence property of the 

algorithm. Motivated by these observations, this 

manuscript’s objective is to analyze the balance 

between the descent of the formula and the gradient-

specific adjustment conditions in the CG and HS-

CG update formulas. Moreover, the HS-CG update 

formula is considered for its damped pattern, which 

can compete with the descent one. In this context, 

some research questions are raised in order to 

analyze the exact behavior of the HS-CG in the 

balance of these different properties. This research 

study’s significant findings are expected to help in 

improving the convergence properties of the HS-

CG. This document comprises five sections, 

including the literature, introduction of key results, 

definitions, conclusions, etc. (3)  

Conjugate Gradient Method  

The conjugate gradient method was initially 

introduced as an iterative algorithm to solve 

symmetric positive definite (SPD) systems of linear 

equations. The algorithmic foundation of this 

method is based on the Krylov subspace. This 

subspace is built using a basis: 

𝐵 =  [𝑔, 𝐻𝑔, . . . , 𝐻(𝑛 − 1)𝑔]                             … (1) 

where (𝑔 =  𝛻𝑓(𝑥)) is the gradient of the objective 

function at the current point x, 𝐻  is the Hessian-

vector product, and 𝑛  denotes the dimension of 

problem. The basis on which the method operates is 

the combination of two important components: 

directional gradient descent, which points to the 

steepest descent of the objective function, and an 

immediate stopping point when the true Hessian is 

used, accelerating the optimization. The method 

encapsulates both benefits: the magnitude of the 

descent increment is gradually improved, and after 

at most n iterations, the conjugate gradient method 

becomes exact for quadratic functions with SPD 

Hessians. Moreover, in cases where the 

optimization problems must guarantee 𝑂(𝑛) 

behavior, the conjugate gradient methods iterate 

tend to become perpendicular to the steepest 

directions, in which case the memory requirements 

are very low, hence making it a perfect choice for 

solving large-scale linear systems (4-8). 

The main notion behind the CG method is to update 

the descent direction in a conjugate way with 

respect to those in the previous iterations, 

disregarding the steepness of the current gradient. 

The first descent direction is simply the adverse 
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gradient, which is the steepest descent direction, 

denoted by (𝑝 =  −𝑔). The first iterates are found 

by carrying out a line search in this direction. For 

the conjugate directions to remain conjugate, we 

update the descent direction by the following 

scheme, which is known as the Polak-Ribiere 

formula (9): 

𝑝(𝑘)  =  −𝑔(𝑘)  +  𝛽𝑘  𝑝(𝑘 −  1)                  … (2) 

This new descent direction 𝑑(𝑛)  is the steepest 

descent direction from the point 𝑥(𝑘) and also it is 

the steepest descent direction with respect to the 

previous descent direction 𝑝(𝑘 −  1)  The 

parameter 𝛽𝑘  can be computed by using the 

following expressions as in Table (1). 
 

Table 1: The conjugacy parameters for Slandered 

Conjugate Gradients. (10-12) 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

  (13)  𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

 (14)  

𝛽𝑘
𝐶𝐷 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

−𝑝𝑘
𝑇𝑔𝑘

    𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

   (15) 

𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑝𝑘
𝑇𝑦𝑘

   𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

−𝑝𝑘
𝑇𝑔𝑘

     

 

 Hestenes-Stiefel Formula  

The Hestenes-Stiefel formula has previously 

appeared in the literature, though none have been 

proposed to handle the issue in the optimization 

problem. This subsection will walk through the 

derivation of the Hestenes-Stiefel CG formula in 

detail and will establish its relevance, invoking its 

application in various scenarios. While the original 

CG method offers several attractive properties—

most notably, converging to the exact solution after 

at most n search directions (where n is the number 

of variables)—it does require the objective function 

to be quadratic (or closely approximated thereby). 

The Hestenes-Stiefel case allows for the 

introduction of gradient-specific properties that 

result in a more optimized choice of search 

direction. These gradient-specific properties look to 

balance a descent direction with a gradient-based 

correction, which in an optimization problem leads 

to desirable properties. Given this connection with 

optimization, the question to this point has not been 

“does the HS-CG formula work?” but rather if and 

how it might be possible to build a more specialized 

formula to exploit optimization-relevant problem 

structures. In light of the proposed anti-progress 

results, we can answer in the affirmative; different 

properties of the optimization problem are both 

learnable and exploitable. These derived, 

optimization-balancing results align with previous 

literature: for example, it was suggested to adapt the 

Hestenes-Stiefel formula by allowing the 

coefficient to be greater than (1) if progression did 

not occur. We go further than this concept, however, 

by abandoning standard mechanistic enhancements 

altogether, thereby further divorcing our update 

formula from the mechanical updates of descent. 

Allowing for gradient-sensitive, scale-dependent, 

and multi-term adjustments simultaneously 

demonstrates a new level of tailored specialty. This 

analytical presentation successfully highlights our 

need for an update: The Hestenes-Stiefel method 

offers interesting, gradient-sensitive experimental 

opportunities since it has traditionally functioned 

well with adaptability. This suggests a solid starting 

point alongside justification for our proposed HS-

CG improvement. Furthermore, this framework has 

been designed with both the presented results and 

specific choice of improvements in mind (1, 16-21) .  

PROPOSED OPTIMIZATION 

The 𝑯𝑺 − 𝑪𝑮 + 𝜼  Formula: The HS-CG update 

formula contains a term that allows the search to 

"slide" along the gradient change with a certain 

modest proportionality constant. This has been 

shown experimentally to help search in several 

cases. Here we use this idea to develop an improved 

HS-CG update formula. We address the annoying 

features of common HS policies and replace the 

common approximate parameter estimation with a 

more direct and robust approach that increases its 

property of "slide" search.  The amount of correction 

term that we suggesting 
(𝑦𝑘

𝑇𝑔𝑘+1)
2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

   to 

embody the planned direction in its form: 
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𝑝𝑘+1 = −𝑔𝑘+1 + [
𝑦𝑘

𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

−
(𝑦𝑘

𝑇𝑔𝑘+1)
2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

]𝑠𝑘     
… (3) 

Modification Steps: We show gradual 

modifications that improve the two HS-CG policies. 

Thus, step by step, we go from the original HS-CG 

up to our developed HS-CG+η update formula. We 

then use the developed expression with a simple 

algebraic manipulation to obtain our proposed 

update formula for the conjugate direction and the 

step size parameters. Proof of concept and free 

parameters estimation. 

Theorem; Consider the search direction defined by 

(3) and assume that the line search  𝛼𝑘 computed by 

the wolfe conditions then the search directions are 

descent. 

Proof: the proof is by induction, for k=0 we have:  

 𝑝1 = −𝑔1      →     𝑝1
𝑇𝑔1 = −‖𝑔1‖2 < 0        … (4) 

Assume that  𝑝𝑘
𝑇𝑔𝑘 < 0, then, for k+1 we have 

𝑔𝑘+1
𝑇 𝑝𝑘+1 = −‖𝑔𝑘+1‖2 + {

𝑦𝑘𝑔𝑘+1
𝑇

𝑦𝑘
𝑇𝑠𝑘

−

(𝑦𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

} 𝑔𝑘+1
𝑇 𝑠𝑘  

 = −‖𝑔𝑘+1‖2 + {
(𝑦𝑘𝑔𝑘+1

𝑇 )(𝑔𝑘+1
𝑇 𝑠𝑘)

𝑦𝑘
𝑇𝑠𝑘

−

(𝑦𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑠𝑘

}  

 … (5) 

By Couchy shwartz inequality  
   𝑔𝑘+1

𝑇 𝑝𝑘+1 ≤ −‖𝑔𝑘+1‖2 +
‖𝑦𝑘‖‖𝑠𝑘‖‖𝑔𝑘+1‖2

‖𝑦𝑘‖‖𝑠𝑘‖
−

(𝑦𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑠𝑘

                                            … (6) 

   𝑔𝑘+1
𝑇 𝑝𝑘+1 ≤ −

(𝑦𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑦𝑘

(𝑠𝑘
𝑇𝑔𝑘+1)

2

𝑦𝑘
𝑇𝑠𝑘

                … (7)                  

Since ( 𝑦𝑘
𝑇𝑠𝑘 > 0 ) by Wolfe condition, hence 

𝑔𝑘+1
𝑇 𝑝𝑘+1 < 0                                                 … (8) 

ANALYSIS OF GLOBAL CONVERGENCE 

Assumption (CG)  

(i): The level set (Ω = {x ∈ Rn: f(x) ≤ f(x1)}) is 

bounded. 

(ii): Within a certain neighborhood N of Ω,  f is 

continuously differentiable and its gradient satisfies 

Lipschitz continuity. Specifically, there exists a 

positive constant L such that 

‖g(x) − g(y)‖  ≤ L  ‖x − y‖ ∀ x, y ∈ N         … (9) 

With these presumptions on f(x)  there exists a 

constant Γ  such that ( ‖∇f(x)‖ ≤ Γ  for all x ∈ s ). 

The following general result is applicable to any 

conjugate gradient method that employs a robust 

Wolfe line search. 

Proposition A1. Assume that the condition CG is 

satisfied. Examine a conjugate gradient method (3) 

wherein, for every iteration k, the search direction 

pk  constitutes a descent direction, and the step-

length αk is established according to the Wolfe line 

search criteria. If:                    
∑

1

‖pk‖2
∞
k=1 = ∞                                             … (10) 

Afterward, the way the algorithm converges is 

lim inf‖gk‖
n→∞

= 0                                            … (11) 

For functions that are uniformly convex, we can 

demonstrate that the norm of the direction pk+1 , 

calculated as in (10), is confined above. 

Consequently, based on proposition (A1), we can 

establish the subsequent result. 

Theorem A2. Suppose that the assumptions (i) and 

(ii) hold. Consider the algorithm (A), pk  is a 

descent direction, and αk  is computed by the strong 

Wolfe line search. Suppose that f is a uniformly 

convex function on S i.e. there exists a constant μ >

0 such that 

                  … (12) 

for all x, y ∈ N Then 

                                                      …(13) 

Proof: From Lipschitz continuity we have ‖yk‖ <

L‖sk‖  On the other hand, from uniform convexity 

it follows that yk
Tsk ≥ μ‖sk‖2       

 from (3) we have 

                         … (14) 

kd

2
( ( ) ( )) ( )Tf x f y x y x y − −  −

lim 0.k
k

g
→

=

2

1 1 1

2
1 11

( ) ( )

( )
 

T T T

k k k k k k
k T T T

k k k k k k

T TT
k k k kk k

T T T

k k k k k k

y g y g s g

y s y y y s

y g s gy g

y s y y y s

 + + +

+ ++

= −

 +
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  By Couchy Shwartz inequality, convexity of 

objective function and Lipschitz condition, we have 

                           … (15) 

             … (16) 

Therefore ‖pk+1‖ is bounded, showing that (10) is 

true. By proposition A1 it follows that (11) is true, 

which for uniformly convex functions is equivalent 

to (13).   

EXPERIMENTAL TESTS 

Properties and Superiority: We make the 

proposed update formula match the needed 

properties and qualify its superiority to the original 

and to further developed HS-CG update formulas. 

Our modifications overcome the trouble created by 

the long-distance iteration’s termination after which 

the spectral technique becomes inefficient, and the 

iterations are simply gradient-based, following the 

first conjugate gradient update step. The updates 

themselves balance between causing the search to 

slide along the gradient direction with a 

proportionality factor and being steered along the 

search space eigenvectors as in Figure (1). 

Experiments Object: We seek to confirm the 

convergence, efficiency, and any potential 

drawbacks of our novel update formula. We also 

assess the connectivity of the updates to verify the 

utility of our equation in practice. 

Experiments: This section details the performance 

of FORTRAN representations of our newly updated 

conjugate gradient algorithms ( 𝐻𝑆𝐶𝐺 𝑎𝑛𝑑 𝐻𝑆 −

𝐶𝐺 + 𝜂) on a series of unconstrained optimization 

test problems derived from (22-24). We selected 

seventy large-scale test problems in extended or 

generalized formats; for each function, we 

conducted numerical tests with varied counts of (n 

= 100, 1000, and 10,000) as in Figure (2). We 

assessed the efficacy of these algorithms against the 

optimal modified CG approach (Andrei, 2007a), as 

suggested by Andrei. These techniques employ 

standard Wolfe line search conditions with (𝜌 =

0.001) and (𝜎 = 0.9), where represents the step size 

( 𝛼𝑘 = 𝛼𝑘−1(‖𝑑𝑘−1‖/‖𝑑𝑘‖) ), and serves as the 

starting estimate for further iterations ( 𝛼1 = 1/

‖𝑔1‖   at (k > 1)). The stopping criterion is 

established, with a maximum iteration limit of 2000. 

The codes are authored in double precision 

FORTRAN (2000) and compiled with the default 

settings of the F77 compiler. 
 

 

Fig. 1: The initial criterion for comparisons between the 

classical (HS and Hg) and the proposed algorithm 

(𝑯𝑺 − 𝑪𝑮 + 𝜼) is the number of iterations 
 

 

Fig. 2: The initial criterion for comparisons between the 

classical (HS and Hg) and the proposed algorithm 

(𝑯𝑺 − 𝑪𝑮 + 𝜼) is the number of 𝒇 evaluation 
 

Comparative analysis method Dolan-More 

benchmark tests were used to determine whether 

or not our technique outperforms competitors (8): 

It turns out that (𝐻𝑆 − 𝐶𝐺 + 𝜂 ) outperforms the 

classic {HS(Hestanse & Stefel) and Hg (Hager & 

Zhange)) (25). Indeed, the results for the criteria 

2

1 1

2 2

2
3

1 1
       

k k k k k

k

k k

k k

k k k

L s g y g s

s s

L g g L
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+ 
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(iterations number and function number 

calculations with derivative) are encouraging. 

CONCLUSION 

This paper presented a new modification to the 

Conjugate Gradient (CG) method, improving its 

descent characteristics using a novel direction 

update formula. The proposed method shown 

enhanced performance over conventional CG 

algorithms by adeptly balancing gradient and step 

projections, especially in high-dimensional and 

large-scale optimization challenges. The 

experimental results highlighted the method's 

ability to achieve faster convergence while reducing 

computational costs, making it a valuable tool for 

complex optimization challenges. These findings 

underscore the potential of the modified HS-CG+η 

method against (HS and Hg) to address the growing 

demands of modern optimization problems. 
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