Calculation of Fundamental Mode Properties for Single-Mode Fibers

Main Article Content

Aqeel R. Salih

Abstract

In this research, properties for the fundamental mode of single-mode step-index optical fibers with core diameters 9.8–15.6 µm, core refractive index  and cladding refractive index  are calculated at a wavelength of 1.55 µm by using RP Fiber Calculator and then compared with the results obtained from equations. It is shown that there is a good agreement for all properties. These results can be useful for designing practical fibers

Article Details

How to Cite
Aqeel R. Salih. (2021). Calculation of Fundamental Mode Properties for Single-Mode Fibers. Tikrit Journal of Pure Science, 26(6), 73–77. https://doi.org/10.25130/tjps.v26i6.195
Section
Articles

References

[1] Weik, M. H. (1989). Fiber Optics Standard Dictionary, 2nd edn., Springer.

[2] Neumann, E. -G. (1988). Single-Mode Fibers: Fundamentals, Springer.

[3] Ghatak, A. and Thyagarajan, K. (1998). Introduction to Fiber Optics, Cambridge.

[4] Massa, N. (2008). Fiber Optic Telecommunication. In: Roychoudhuri, C. (ed.), Fundamentals of Photonics, SPIE.

[5] Saleh, B. E. A. and Teich, M. C. (1991). Fundamentals of Photonics, Wiley.

[6] Okamoto, K. (2006). Fundamentals of Optical Waveguides, 2nd edn., Elsevier.

[7] Hirano, M. et al. (2013). Record Low Loss, Record High FOM Optical Fiber with Manufacturable Process. Proc. Opt. Fiber Commun. Conf., 17–21 March 2013, Anaheim, CA, USA. Paper PDP5A.7.

[8] Makovejs, S. et al. (2015). Record-Low (0.1460 dB/km) Attenuation Ultra-Large Aeff Optical Fiber for Submarine Applications. Proc. Opt. Fiber Commun. Conf., 22–26 March 2015, Los Angeles, CA, USA. Paper Th5A.2.

[9] Tamura, Y. et al. (2017). Lowest-Ever 0.1419-dB/km Loss Optical Fiber. Proc. Opt. Fiber Commun. Conf., 19–23 March 2017, Los Angeles, CA, USA. Paper Th5D.1

[10] Salih, A. R. (2020). Design of Single Mode Fiber for Optical Communications. Ibn Al-Haitham Journal for Pure and Applied Science, 33 (1): 40–47.

[11] Salih, A. R. (2021). Design of Step-Index Multimode Optical Fiber. Journal of Physics: Conference Series, 1879 (3): 032074.

[12] Senior, J. M. (2009). Optical Fiber Communications: Principles and Practice, 3rd edn., Pearson.

[13] Dong, L. and Samson, B. (2017). Fiber Lasers: Basics, Technology and Applications, CRC.

[14] Agrawal, G. P. (2016). Optical Communication: Its History and Recent Progress. In: Al-Amri, M. D.; El-Gomati, M. M. and Zubairy, M. S. (eds.), Optics in Our Time, Springer.

[15] Ghatak, A. (2010). Optics, McGraw-Hill.

[16] Kumar, S. and Jamal Deen, M. (2014). Fiber Optic Communications: Fundamentals and Applications, Wiley.

[17] Brown, T. G. (1995). Optical Fibers and Fiber-Optic Communications. In: Bass, M.; Van Stryland, E. W.; Williams, D. R. and Wolfe, W. L. (eds.), Handbook of Optics, Volume II: Devices, Measurements and Properties, 2nd edn., McGraw-Hill.

[18] Peters, K. J. and Inaudi, D. (2014). Fiber Optic Sensors for Assessing and Monitoring Civil Infrastructures. In: Wang, M. L.; Lynch, J. P. and Sohn, H. (eds.), Sensor Technologies for Civil Infrastructures, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment, Woodhead.

[19] Johnson, M. (2010). Optical Fibres, Cables and Systems, ITU.

[20] Hussey, C. D. and Martinez, F. (1985). Approximate Analytic Forms for the Propagation Characteristics of Single-Mode Optical Fibres. Electron. Lett., 21 (23): 1103–1104.

[21] Agrawal, G. P. (2021). Fiber-Optic Communication Systems, 5th edn., Wiley.