Synthesis and characterization of new mixed ligand complexes of Zn (II) and Hg (II) with dithiocarbamate and phosphines
Main Article Content
Abstract
Complexes of the type [M (Et2DTC)2]2 [M= Zn(1) or Hg(2)] were prepared from the reaction of mercury acetate or zinc acetate with sodium diethyldithiocarbamate trihydrate (NaEt2DTC.3H2O) in (1:2) molar ratio (metal: ligand) in mixture of MeOH and H2O as a solvent. Treatment equal molar of (1) or (2) with diphosphine ligands {where diphos: bis (diphenylphosphino) methane (dppm), 1,2-bis (diphenylphosphino) ethane (dppe) and 1,3-Bis (diphenylphosphino) propane (dppp)} afforded complexes of the type [Zn(Et2DTC)2(dppeO)] (3); [Zn(Et2DTC)2(dpppS)] (4a); [Zn(Et2DTC)2(dppp)] (4b); [Hg(Et2DTC)2(dppm)] (6a); [Hg(Et2DTC)2(µ-dppm)]2(6b); [Hg(Et2DTC)2(dppe)](7) and [Hg(Et2DTC)2(dppp)](8), or with two moles of triphenylphosphine (PPh3) afforded a complexes of the type [M(κ1-Et2DTC)2(PPh3)2] (5a, 9a) and [M(κ2-Et2DTC)2(PPh3)2] (5b, 9b) {M= Zn, Hg}. The prepared complexes were fully characterized by different technics such as IR, NMR (1H and 31P) spectroscopy, elemental analysis, and molar conductivity. Characterization data showed that the (Et2DTC) ligand in all of the prepared complexes was coordinated with metal through the sulfur atoms of CSS- group. The geometry of the complexes (1-9) were tetrahedral around the Zn(II) and Hg(II) ions, except isomers 5b and 9b are octahedral geometry. .
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Ogasawara, M., Nagano, T., & Hayashi, T. (2005). A New Route to Methyl (R, E)-(−)-Tetradeca-2, 4, 5-trienoate (Pheromone of Acanthoscelides obtectus) Utilizing a Palladium-Catalyzed Asymmetric Allene Formation Reaction. The Journal of Organic Chemistry, 70(14), 5764–5767.
[2] Trevisan, A., Marzano, C., Cristofori, P., Venturini, M. B., Giovagnini, L., & Fregona, D. (2002). Synthesis of a palladium (II)-dithiocarbamate complex: biological assay and nephrotoxicity in rats. Archives of Toxicology, 76(5–6), 262–268.
[3] Malik, W. U., Bembi, R., & Bhardwaj, V. K. (1980).Metal-complexes with sulfur donor ligands.1.preparation and characterization of some mixed-ligand complexes containing bidentate tertiary-amines and ethyl xanthate .Journal of the indian chemical society,57(1),35-38.
[4] Chaurasia, M. R., Sharma, A. K., & Sharma, S. K. (1981). Synthesis of some new dithiocarbamates as potential insecticides and agricultural and garden fungicides. Chemischer Informationsdienst, 12(49), no-no.
[5] Stephen, W. I. (1966). J. Stary, The solvent extraction of metal chelates: Pergamon Press, Oxford, 1964, xiv+ 240 pp., price 60 s. Elsevier.
[6] Iwasaki, H. (1973). The crystal structure of dimeric and monomeric forms of mercury (II) N, N-diethyldithiocarbamate, Hg2(S2CNEt2)4 and Hg(S2CNEt2)2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 29(10), 2115–2124.
[7] Cvek B, Dvorak Z.(2007). Targeting of nuclear factor-κB and proteasome by dithiocarbamate complexes with metals. Curr Pharm Des,13(30),3155–3167.
[8] Iwasaki, H. (1973). The crystal structure of dimeric and monomeric forms of mercury (II) N, N-diethyldithiocarbamate, Hg2(S2CNEt2)4 and Hg(S2CNEt2)2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 29(10), 2115–2124. [9] Tiekink, E. R. T. (2000). Redetermination of the crystal structure of dimeric bis (N, N-diethyldithiocarbamato) zinc, [Zn(S2CNEt2)2]2. Zeitschrift für Kristallographie-New Crystal Structures, 215(3), 445-446.
[10] Wessel, W., Tyrra, W., & Naumann, D. (2001). Synthese und Eigenschaften von Diethyldithiocarbaminsäureperfluororganylestern,(C2H5)2NC (S) SRf (Rf= CF3, C2F5, i‐C3F7, n‐C4F9, C6F5). Zeitschrift Für Anorganische Und Allgemeine Chemie, 627(6), 1264–1268.
[11] Abrahams, B. F., Dakternieks, D., Hoskins, B. F., & Winter, G. (1988). Syntheses and NMR-Studies of Cationic Mercury Xanthate, Dithiophosphate and Dithiocarbamate Tricyclohexylphosphine Adducts-the Crystal and Molecular-Structures of [Hg(S2CNEt2)(P(C-C6H11)3)2]+(Cf3SO3)- [Hg (S2copri)(P (C-C6h11) 3) 2]+(ClO4)-. CH2Cl2 And [Hg (S2p (Opri) 2)(P (C-C6H11) 3) 2]+(Cf3SO3)-. Australian Journal of Chemistry, 41(5), 757–771.
[12] Faraglia, G., Sindellari, L., & Sitran, S. (1990). Thermal S-demethylation in palladium (II) and platinum (II) complexes with S-methyl N, N-dialkyldithiocarbamates. Thermochimica Acta, 161(1), 63–73.
[13] Rochon, F. D., Melanson, R., & Kong, P.-C. (1992). Rearrangement of tetramethylthiourea to dimethyldithiocarbamate and crystal structures of [Tc (O)(C5H12N2S)2 ((CH3)2NCSS)](PF6)2 and [Tc (dppe)2((CH3) 2NCSS)](PF6). Inorganica Chimica Acta, 194(1), 43–50.
[14] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81–122. [15] Georgieva, I., & Trendafilova, N. (2007). Bonding analyses, formation energies, and vibrational properties of M− R2dtc complexes (M= Ag (I), Ni (II), Cu (II), or Zn (II)). The Journal of Physical Chemistry A, 111(50), 13075-13087.
[16] Gupta, S. K., & Srivastava, T. S. (1970). Infrared and 1H NMR spectra of five co-ordinate complexes of the bis (N, N′-diethyldithiocarbamato) zinc with the pyridine and other related nitrogen donors. Journal of Inorganic and Nuclear Chemistry, 32(5), 1611–1615.
[17] Bigotto, A., Costa, G., Galasso, V., & De Alti, G. (1970). Infra-red spectra and normal vibrations of bis-dimethylglyoximates of transition metals. Spectrochimica Acta Part A: Molecular Spectroscopy, 26(9), 1939–1949.
[18] Kuchen, W., & Buchwald, H. (1958). Zur Kenntnis der Organophosphorverbindungen, II. Das Tetraphenyldiphosphin. Chemische Berichte, 91(12), 2871–2877.
[19] Al-Jibori, S. A., Abdullah, A. I. and Al-Allaf, T. A. K. (2007). Mononuclear and heterobimetallic palladium(II) and platinum(II) complexes containing the mixed ligands N-(2-pyridyl or 2-pyrimidyl) acetamide and tertiary diphosphines. Transition Metal Chemistry, 32(3): 398–406.
[20] Al-Janabi A.S. M., Abdullah B.H., and Al-Jibori S.A., (2009). Synthesis, crystal structure and spectral studies of mercury(II) complexes containing the mixed ligands benz-1,3-imidazoline -2-thione, benz-1,3-oxazoline -2-thione, benz-1,3-thiazoline -2-thione, and diphosphines. Oriental Journal Chemistry, 25(2):277-286.
[21] Al-Janabi, A. S. M. Ahmed, S. A. and Ahmed, S. A. O., (2017). Synthesis and characterization of mercury(II) mixed ligands complexes derived from 5-(4-pyridyl)-1,3,4- oxadiazole-2-thione with tertiary phosphines ligands Kirkuk University Journal / scientific studies. 12(2):9-21.
[22] Al-Janabi, A. S. M. Jerjes, H. M. and Salah, M. H., (2017). Synthesis and characterization of new metal complexes of thione and phosphines Ligands. Tikrit Journal of Pure Science, 22(9): 53-61.
[23] Ahmed S. A. and Al-Janabi A. S. M., (2018), Synthesis, Spectroscopic characterization of Co(II), Ni(II) and Cu(II) complexes with 2-meracapto-5-(2,4-dinitrophenyl)-1,3,4-oxadiazole or 2-meracapto-5-((4-(dimethylamino) benzylidene)amino)-1,3,4-thiadiazole ligands. Oriental Journal Chemistry, 34(4):787-784. [24] Al-Janabi, A. S. M., Irzoqi A. A., and Ahmed S. A.O., (2016). Synthesis and characterization of mixed ligands cadmium (II) complexes with N-hydroxymethylsaccharinate and diphosphines. Tikrit Journal of Pure Science, 21(3):54-60.
[25] Al-Jibori, S. A., Barbooti, M. M., Al-Janabi, A. S. M., Ali A.H., Sami N., Aziz B. K., and Basak-Modi S., (2017). Synthesis, characterization and thermal studies of mixed ligand mercury(II) complexes of N-hydroxymethylsaccharin (Sac-CH2OH) and phosphine or heterocyclic amine co-ligands, Research Journal of Chemical Sciences. 7(10):1-5.
[26] Al-Jibori, S. A., Al-Janabi, A. S. M., Basak-Modi, S., Mohamed, S. S., and Schmidt, H. (2015). Mixed ligand palladium (II) complexes of N-hydroxymethylsaccharin (Sac-CH2OH): synthesis, characterization and biological studies. Transition Metal Chemistry, 40(8):917-921.
[27] Al-Doori, M. E. A. and Al-Janabi, A. S. M., (2019). New Salicylanilide-Hg(II) complexes with phosphine ligands, Synthesis and spectroscopic investigation. Tikrit Journal of Pure Science, 24(5):31-37.
[28] Al-Doori, M. E. A., Al-Janabi, A. S. M. and Othman, E. A. (2019). Mixed Ligand Complexes of Hg-tetrazole-thiolate with phosphine, Synthesis and spectroscopic studies. Tikrit Journal of Pure Science, 24(5):10-17.
[29] Grushin, V. V. (2001). Synthesis of Hemilabile Phosphine− Phosphine Oxide Ligands via the Highly Selective Pd-Catalyzed Mono-oxidation of Bidentate Phosphines: Scope, Limitations, and Mechanism. Organometallics, 20(18), 3950-3961.
[30] Breshears, A. T., Behrle, A. C., Barnes, C. L., Laber, C. H., Baker, G. A., & Walensky, J. R. (2015). Synthesis, spectroscopy, electrochemistry, and coordination chemistry of substituted phosphine sulfides and selenides. Polyhedron, 100, 333-343.