Simulation of CZTSSe single solar cells by AFORS-HET software

Main Article Content

Buthina M. Jandary
Ayed N. Saleh

Abstract

In this paper, this sthdy simulated photovoltaic characteristics of single heterojunction solar cell with Cu2ZnSnS4 and Cu2ZnSnSe4 absorber layer numerically using the AFORS-HET program .n-CdS/ZnO double buffer layer is used for hetrostructure interfaces with the absorber layer. The cell performance is investigated against variation of different absorption layer properties such as thickness, carrier concentration. The mixed zinc and cadmium sulphide (Cd1-X Zn X S) is hired as buffer layers and reseach of the effect  its thickness. CdS was selected a buffer because it improves the interface with absorbent CZTSSe and has a lofty  sending  in the blue wavelength. at thickness =1 μm and acceptor concentration (Na=7.9×1015 cm-3) ,a maximum efficiency  (η=11.9%)  is provided  with an open-circuit voltage (Voc=688mv), short-circuit current (Jsc=24.6 mA.cm-2) and fill factor (FF =70.8 of the CZTS solar cell, and Voc=(597 mv), Jsc= (41.7mA.cm-2), FF = (81.2 %) and η= (20.2%) of the CZTSe solar cell.

Article Details

How to Cite
Buthina M. Jandary, & Ayed N. Saleh. (2020). Simulation of CZTSSe single solar cells by AFORS-HET software. Tikrit Journal of Pure Science, 25(2), 71–80. https://doi.org/10.25130/tjps.v25i2.238
Section
Articles

References

[1] Minlin, J. and Xingzhong, Y. (2014). Cu2ZnSnS4 Thin Film Solar Cells Present Status and Future Prospects. Solar cells Research and application perspectives , 9(5100): 107-146.

[2] Stephan, A.(2013). Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells. Solar Energy,94 : 37–70.

[3] Yang, K.J. et al. (2016). A band-gap-graded CZTSSe solar cell with 12.3% efficiency. Journal of Materials Chemistry A, 4(26) : 10151-10158.

[4] Wadia, W.; Alivisatos, A.P. and Daniel, M.K. (2009). Materials availability expands the opportunity for large-scale photovoltaics deployment. Environmental Science and Technology, 43(6): 2072-2077. [5] Fang, Q.Z. et al. (2016). Fabrication of earthabundant Cu2ZnSn(S, Se)4 light absorbers by a sol–gel and selenization route for thin film solar cells. Royal Society of Chemistry (RSC) ,6 (8) : 6562-6570.

[6] Stangl, R.; Froitzheim, A.; Kriegel, M.; Elstner,L. and Fuhs, W. (2003). AFORS-HET, a computer Program for the Simulation of Heterojunction Solar Cells to be Distributed for Public Use.In: 3rd World Conference on Photovoltaic Energy Conversion, 11-18 May 2003, Osaka, Japan: 279-282.

[7] Stangl, R.; Haschke, J. and Leendertz, C. (2009). Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the open-source on demand program AFORS-HET, version 2.4. Solar Energy,.1(191) : 432.

[8] Roosbroeck, W.V. et al (1950). Theory of the flow of electrons and holes in germanium and other semiconductors. The Bell System Technical Journal 29(4) : 560–607.

[9] Green, M.A. (1982). Solar Cells, Operating Principles, Technology and System Application . Prentice-Hall , 85823( 5803) : 274. [10] Jha, A.R. (2019) . Deployment of Rare Earth Materials in Microware Devices, RF Transmitters, and Laser Systems. Solar Cells Technology and Applications. CRC Press, Taylor &Francis Group: 180 pp

[11] Wanda, M.D.; Ouédraogo, S.; Tchoffo, F.; Zougmoré, F. and Ndjaka, J. (2016). Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. International Journal of Photoenergy , 21(5201) :1-9 .

[12] Doo, Y.L.; Byung, T.K. and Hoon, Y.J. (2003). Effect of First-Stage Temperature On Cu(In,Ga)Se2 Solar Cells Using The Evaporation Of Binary Selenide Compounds. Solar Energy. Materils. Solar Cells.75(1-2) :73-79.

[13]Uday, S. and Kawsar,A. (2017). Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. Royal Society of Chemistry (RSC) , 7 (4806) : 4806-4814 .

[14] Brammertz, G. et al. (2014). Spectral current–voltage analysis of kesterite solar cells. Journal of Physics D: Applied Physics, 47(17) :1-4.

[15]Sadao, A. (2015). Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors, Earth-Abundant Mater. Solar Cells Cu2-II-IV-VI4 semiconductors. Library of Congress Cataloging-in-Publication data applied for ISBN: 9781119052777, India : 462 pp.

[16]Courel, M.; Pulgarn, F. A.; Andrade, J. A. and Vigil, O.G.(2016). Open-circuit voltage enhancement in CdS/Cu2ZnSnSe4-based thin film solar cells, A metal-insulator-semiconductor (MIS) performance. Solar Energy Mater. Solar Cells, 149(23) : 204-212.

[17] Mahbub, R.; Saidul Islam, M.; Anwar, F.;Satter, S.S. and Mahmud Ullah,S. (2016). Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian Journal of Engineering and Technology, 2(52) : 1-10.

[18]Simya, O.; Mahaboob batcha. A. and Balachander, K.(2015). A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices and Microstruct, 82(3) : 248-261.

[19] Islam, S. et al. (2015) . Optical, Structural and Morphological Properties of Spin Coated Copper Zinc Tin Sulfide Thin Films. Received: International Journal of Thin Films Science and Technology , 4( 3) :155-161 .

[20] Amal, M. I. and Kim. K. H. (2012). Optical Properties Of Selenized Cu2ZnSnSe4 Films From A Cu-Zn-Sn Metallic Precursor. Materials Science and Engineering , 9(8) : 345 – 353.

[21]Iftiquar, S.M. and Junsin,Y. (2016). Numerical simulation and light trapping in perovskite solar cell. Journal of Photonics for Energy, 6(2) :1-7.

[22] Burschka, J. et al. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Journal of Nature, 499 (13) : 316–319.

[23] Wang, K. G. et al. (2010). Thermally evaporated Cu2ZnSnS4 solar cells. Applied Physics Letters, 97(14) : 480-484.

[24] Marlein, J.; Decock, K. and Burgelman, M. (2009) . Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells. Thin solid films, 517( 7) : 2353-2356.

[25] Candless, M. and Hegedus, B.S. (1991). Influence of CdS window layer on Thinfilm CdS/CdTe solar cell performance. Proceedings of 22nd IEEE photovoltaic specialists conference, 7–11 October 1991, Las Vegas, Nevada, USA : 967-972.

[26] Eisele, W. et al. (2003). TEM and NRA investigations of Zn(Se, OH)/Zn(OH)2 films on Cu(In, Ga)(S, Se)2 substrates for highly efficient solar cells.Solar Energy Mater. Solar Cell, 7(1–2): 17–26.

[27] Nguyen, M. et al. (2015). ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Solar Energy, 111(15) : 344–349.

[28] Roy, P. and Srivastava, S. K.(2006) . Hydrothermal Growth of CuS Nanowires from Cu−Dithiooxamide, a Novel Single-Source Precursor. Journal of applied central science(ACS) , 6 (8) : 1921-1926.

[29] Gunavathy, K.V.; Parthibaraj,V. ; Rangasami, C. and Tamilarasan,K. (2016). Prospects of alternate buffer layers for CZTS based thin films solar cells from numerical analysis—a review. South Asian Journal of Engineering and Technology(SAJET) , 2(16) : 88–96.

[30] Ferdaous, M.T.; Islam, M.F.; Haque, K.A and Amin, N.(2015). Numerical analysis of ultra-thin high efficiency Cd1−xZnxS/Cd1−xZnxTe solar cell. Electron Enrgy, 5(A) : 14–18.

[31] Farjana, A.J; Marshia .Z.S and Mohammad ,J.R. (2019) . Towards high efficiency CZTS solar cell through buffer layer optimization. Materials for Renewable and Sustainable Energy 8(6) : 1-7.

[32]Sun, D.Z. et al. (2018). CZTSSe solar cells with 9.6% efficienizing Cu-Zn-Sn-S precursor sputtered from a quaternary target. Solar Energy Materials and Solar Cells, 174(7) : 42-49.

[33] Yaowei, W. et al .(2019).An investigation on the relation ship between open circuit voltage and grain size for cztsse thin film solar cells fabricated by selenization of sputtered precusors. Journal of alloys and compounds ,778(30) : 689-697.