Complement Hopfian Module

Main Article Content

Sufyan A. Hamid
Nada K. Abdullah

Abstract

Amodule M is called comp. Hopfian if any epomorphism f  End (M) . ker f is complement of N in M for some submodule N of M . In this study, some properties of comp. Hopfian modules are investigated with examples . 

Article Details

How to Cite
Sufyan A. Hamid, & Nada K. Abdullah. (2020). Complement Hopfian Module. Tikrit Journal of Pure Science, 25(3), 121–123. https://doi.org/10.25130/tjps.v25i3.259
Section
Articles

References

[1] Birkenmeler G. F. (1976) ."On the cancelation of a quasi –injective module" Comm. In Algebra, vo.(4), No.(2).

[2] Goodearl K. R.(1976). "Ring Theory, Nonsingular Rings and Modules", Marcel Dekker, Inc. NewYork and Basel

[3] Majeed R. N. Al-Qaragholy (2011)., "On Min (Max)-CS Modules", M.Sc. Thesis, College of Education, Ibn Al-Haitham , University of Baghdad,

[4] Aydogdu, P. Ozcan, A. Cigdem, (2008). "Semi co-Hopfian and Semi Hopfian Module", East-West J. Math. 10 ,1:55-70

[5] Dungh N. V. Huynh D. V. Smith P. F. and Wisbauer R., (1994)."Extending Modules", Pitman Researh Notes in Mathematics Series 313, Longmon New York.

[6] Kasch F., (1982). "Modules and rings", Academic press, London, New York.

[7] Salih, A. H. (2018) .''Pseudo Hopfian R-modules and Related Concepts'' Thesis, M. sc. College of Education for pure Sciences, University of Tikrit .