Detection of Bacterial causes of diarrhea in patients with SARS-CoV-2 in Samarraa city

Main Article Content

Noor Asaad Ahmed
Bashar Sadiq Noomi
Osama N. Najris

Abstract

The current study aimed to detection of bacterial causes of diarrhea in patients with SARS-CoV-2 in Samarraa city, for this purpose, 71 stool samples collected from SARS-CoV-2 patients with diarrhea, bacterial culture techniques, biochemical tests and vitik2 were used. The results showed that out of 71 sample,  45 Gram-negative isolates (63.38%) and 26 Gram-positive isolates (36.62%). Main bacteria spp. Were Escherichia. coli, Klebsiella pneumoniae, proteus mirabilis, Pseudomonas aeruginosa, Salmonella. typhimurium, Staphylococcus aureus, Enterococcus. fecalis

Article Details

How to Cite
Noor Asaad Ahmed, Bashar Sadiq Noomi, & Osama N. Najris. (2022). Detection of Bacterial causes of diarrhea in patients with SARS-CoV-2 in Samarraa city. Tikrit Journal of Pure Science, 27(4), 17–22. https://doi.org/10.25130/tjps.v27i4.28
Section
Articles

References

[1] Lai, C. C., Wang, C. Y., and Hsueh, P. R. (2020). Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents?. Journal of Microbiology, Immunology and Infection, 53(4), 505-512.

[2] Adebisi, Y. A., Alaran, A. J., Okereke, M., Oke, G. I., Amos, O. A., Olaoye, O. C.,.. and Lucero-Prisno III, D. E.(2021). COVID-19 and Antimicrobial Resistance: A Review. Infectious Diseases: Research and Treatment, 14,11786337211033870.

[3] Arashiro, T., Nakamura, S., Asami, T., Mikuni, H., Fujiwara, E., Sakamoto, S., ... and Saito, H. (2020). SARS-CoV-2 and Legionella co-infection in a person returning from a Nile cruise. Journal of travel medicine, 27(3), taaa053.

[4] Shafran, N., Shafran, I., Ben-Zvi, H., Sofer, S., Sheena, L., Krause, I.,.. and Sklan, E. H. (2021). Secondary bacterial infection in COVID-19 patients is a stronger predictor for death compared to influenza patients. Scientific reports, 11(1), 1-8.

[5] Chhibber-Goel, J., Gopinathan, S., and Sharma, A. (2021). Interplay between severities of COVID-19 and the gut microbiome: implications of bacterial co-infections?. Gut Pathogens, 13(1), 1-6.

[6] Gil, E., Martyn, E., Rokadiya, S., Jain, S., and Chin, T. L. (2021). Bacterial Coinfection in COVID-19. Clinical Infectious Diseases, 73(3), e843-e845 [7] Al-Abbas, A. K. (2018). Etiology of bacterial diarrhea in children under five years in Kerbala Province [8] Mikhael, E. M., and Al-Jumaili, A. A. (2020). Can developing countries face novel coronavirus outbreak alone? The Iraqi situation. Public Health in Practice, 1, 100004. .

[9] Franco-Duarte, R., Černáková, L., Kadam, S., S Kaushik, K., Salehi, B., Bevilacqua, A., ... and Rodrigues, C. F. (2019). Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms, 7(5), 130.

[10] Kourmouli, A., Valenti, M., van Rijn, E., Beaumont, H. J., Kalantzi, O. I., Schmidt-Ott, A., and Biskos, G. (2018). Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles?. Journal of Nanoparticle Research, 20(3), 1-6.

[11] Abbey, T. C., and Deak, E. (2019). What's new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clinical Microbiology Newsletter, 41(23), 203-209.

[12] Saeed, N. K., Al-Khawaja, S., Alsalman, J., Almusawi, S., Albalooshi, N. A., and Al-Biltagi, M. (2021). Bacterial co-infection in patients with SARS-CoV-2 in the Kingdom of Bahrain. World journal of virology, 10(4), 168.

[13] Abdul-Husin, I. F., and Abdul-Razzaq, M. S. (2021). Detection of Gyrase Enzyme among Clinical Isolates of E. coli Resistance to some Quinolone Antibiotics. Journal of Chemical Health Risks, 11(4), 419-429.

[14] Sharqi, H. M., Hassan, O. M., and Obaid, A. S. (2021). Investigation of the Antibiotic-Resistant ESKAPE Pathogens in Ramadi Hospitals, Iraq. Indian Journal of Forensic Medicine & Toxicology, 15(4), 3307. [15] Gomes, C., Ruiz-Roldán, L., Mateu, J., Ochoa, T. J., and Ruiz, J. (2019). Azithromycin resistance levels and mechanisms in Escherichia coli. Scientific reports, 9(1), 1-10.

[16] Hasan, T. H., and Al-Harmoosh, R. A. (2020). Mechanisms of antibiotics resistance in bacteria. Sys Rev Pharm, 11(6), 817-823.

[17] Cong, Y., Yang, S., and Rao, X. (2020). Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of Advanced Research, 21, 169-176.

[18] Sabeeh, R. A., Mousa, M. N., and Khudaier, B. Y. (2018). PREVALENCE AND ANTIBIOTIC SENSITIVITY OF Escherichia coli AND Klebsiella pneumoniae FROM PATIENTS AND ANIMALS IN BASRAH PROVINCE. Bas. Journal Vet. Res, 17(1), 192-208.

[19] Sharqi, H. M., Hassan, O. M., and Obaid, A. S. (2021). Investigation of the Antibiotic-Resistant ESKAPE Pathogens in Ramadi Hospitals, Iraq. Indian Journal of Forensic Medicine & Toxicology, 15(4), 3307. [20] Wang, G., Zhao, G., Chao, X., Xie, L., and Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278.

[21] Shrief, R., Hassan, R. H., Zaki, M. E. S., and Rizk, M. A. (2022). Molecular Study of Associated with Urinary Tract Infection in Children. The Open Microbiology Journal, 16(1).

[22] Ghasemian, A., Mobarez, A. M., Peerayeh, S. N., and Abadi, A. B. (2019). The association of surface adhesin genes and the biofilm formation among Klebsiella oxytoca clinical isolates. New microbes and new infections, 27, 36-39.

[23] Allawi, F. A., and Motaweq, Z. Y. PHENOTYPIC AND MOLECULAR CORRELATION BETWEEN BIOFILM PRODUCTION AND ANTIBIOTIC RESISTANCE OF PROTEUS MIRABILIS ISOLATED FROM DIFFERENT CLINICAL SOURCES/IRAQ. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.

[24] Jabbar, A. H., Kadhim, M. I., and Jabbar, M. H. (2019). ANTIBIOTICS RESISTANCE PROFILE OF BACTERIAL STRAINS PRODUCED OF BIOFILM ISOLATED FROM PATIENTS IN AL-DIWANIYA CITY, IRAQ. International Journal of Engineering Applied Sciences and Technology, 4(8), 295-299 [25] Dhanda, G., Sarkar, P., Samaddar, S., and Haldar, J. (2018). Battle against vancomycin-resistant bacteria: recent developments in chemical strategies. Journal of medicinal chemistry, 62(7), 3184-3205. [26] Hooper, D. C., and Jacoby, G. A. (2016). Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor perspectives in medicine, 6(9), a025320. [28] Roberts, M. C., and Schwarz, S. (2017). Tetracycline and chloramphenicol resistance mechanisms. In Antimicrobial drug resistance (pp. 231-243). Springer, Cham.

[28] Ganamé, O. U. É. D. R. A. O. G. O., Hama, C. I. S. S. E., and Aly, S. A. V. A. D. O. G. O. (2020). Prevalence and resistance profile of Enterobacteriaceae producing extended spectrum Beta-Lactamases isolated from the laboratory of bacteriology and parasitology in National Public Health Laboratory of Ouagadougou.

[29] Agha, Z. H. M., and Al-Delaimi, M. S. (2021). Prevalence of common bacterial etiology and antimicrobial susceptibility pattern in patients with otitis media in Duhok Province–Iraq. Zanco Journal of Pure and Applied Sciences, 33(4), 11-25. [30] Liu, J., Chen, F., Wang, X., Peng, H., Zhang, H., and Wang, K. J. (2020). The Synergistic Effect of Mud Crab Antimicrobial Peptides Sphistin and Sph12− 38 With Antibiotics Azithromycin and Rifampicin Enhances Bactericidal Activity Against Pseudomonas Aeruginosa. Frontiers in Cellular and Infection Microbiology, 10

[31] Hong, J. S., Yoon, E. J., Lee, H., Jeong, S. H., and Lee, K. (2016). Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying bla IMP-6 and emergence of bla GES-24 and bla IMP-10 on novel genomic islands PAGI-15 and-16 in South Korea. Antimicrobial agents and chemotherapy, 60(12), 7216-7223.

[32] Abd Al-Mayahi, F. S., and Jaber, S. M. (2020). A preliminary study of multiple antibiotic resistance (MAR) and extensively drug-resistant (XDR) of bacterial causing typhoid fever isolated from stool specimens in Al-Diwaniya, Iraq. EurAsian Journal of BioSciences, 14(1), 2369-2378.

[33] Uddin, M., and Ahn, J. (2018). Characterization of β-lactamase-and efflux pump-mediated multiple antibiotic resistance in Salmonella Typhimurium. Food science and biotechnology, 27(3), 921-928. [34] Salih, R. M., Rafiq, S. N., and Hamad, P. A. (2017). Vancomycin Resistance among Methicillin Resistant Staphylococcus aureus isolated from Clinical Samples in Erbil City, Iraq. Kirkuk university journal for scientific studies, 12(2), 108-20

[35] Salih, R. M., Rafiq, S. N., and Hamad, P. A. (2017). Vancomycin Resistance among Methicillin Resistant Staphylococcus aureus isolated from Clinical Samples in Erbil City, Iraq. Kirkuk university journal for scientific studies, 12(2), 108-20.

[36] Karakonstantis, S., and Kalemaki, D. (2019). Antimicrobial overuse and misuse in the community in Greece and link to antimicrobial resistance using methicillin-resistant S. aureus as an example. Journal of Infection and Public Health, 12(4), 460-464.

[37] Guo, Y., Song, G., Sun, M., Wang, J., and Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology, 10, 107.

[38] Unni, S., Siddiqui, T. J., and Bidaisee, S. (2021). Reduced Susceptibility and Resistance to Vancomycin of Staphylococcus aureus: A Review of Global Incidence Patterns and Related Genetic Mechanisms. Cureus, 13(10). [39] Al-Dahmoshi, H. O., Rabeea, H. W., Aridhee, A. S. A., Al-Khafaji, N. S., Al-Allak, M. H., Lazm, A. M., and Jebur, M. S. (2019). Phenotypic Investigation of Vancomycin, Teicoplanin and Linezolid Resistance Among Enterococcus spp. Isolated from Children Diarrhea. J Pure Appl Microbiol, 13(1), 531-6 [40] Siddhardha, B., Dyavaiah, M., and Syed, A. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug.

[41] Ning, Q., Wang, D., Cheng, F., Zhong, Y., Ding, Q., and You, J. (2021). Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus. BMC bioinformatics, 22(1), 1-16.

[42] Raza, T., Ullah, S. R., Mehmood, K., and Andleeb, S. (2018). Vancomycin resistant Enterococci: A brief review. J Pak Med Assoc, 68(5), 768-772.