ON (sub- super) asymptotic martingales

Main Article Content

Hassan H- Ebrahem
Juwan Abbas-Ali

Abstract

In this paper we intoduce a new class of definitions (sub - super) asymptotic martingale through the concept of asymptotic martingale. we investigate and prove some properties of asymptotic martingale and (sub - super) asymptotic martingale .

Article Details

How to Cite
Hassan H- Ebrahem, & Juwan Abbas-Ali. (2020). ON (sub- super) asymptotic martingales. Tikrit Journal of Pure Science, 25(4), 127–130. https://doi.org/10.25130/tjps.v25i4.282
Section
Articles

References

[1] KRUK, L.,(1996) convergenc of tight asymptotic martingales in banach spaces, Math .scand.79 (1996) 153-160 .

[2] G.A. Edgar and L. sucheston, (1976). Amart :a class of a symptotic martingales. A. Discrete parameter ,j. Multivariate, Anal 6(1976),193-221 .

[3] Ash, A. (1972) "probability space and a real Analysis", Academic press ,Inc .,New York .

[4] D. Hassna and Hind (2012) some Results in martingale and reverse martingale, university of Tikrit, Iraq.

[5] A. Bellow .uniform Amarts :A class of asymptotic martingale for which strong sure convergence obtains Z . warsch .verw .Gebiete 41 (1978) 177 -191.

[6] Chacon R.V. and Sucheston L. On the convergence of vector – valued asymptotic martingales. Z .warssch .verw, Gebiete 33 (1975) 55 -59 .

[7] Chatterji S, D. Martingale convergence and RN –theorems in Banach space. Math. Scand 22 (1968) 21-41.

[8] R .V .chacon and L. Sucheston, on convergence of vector asymptotic martingale Z. Wahrsch .verw Gebiete 33 (1975) ,55-59 .