Structure and Vibrational study of Entrance Channel of Monomer C2H2+ Cl via ab initio calculation

Main Article Content

Media Ismael Sulaiman

Abstract

Theoretical calculations are reported to predict the geometrical structures and IR vibrational frequencies of entrance channel of C2H2+Cl interaction in the ground state. The calculations are performed via Ab initio calculations at perturbation theory (MP2) with Dunning correction-consistent basis set (aug-cc-pVDZ). The results show that attaching acetylene molecule with radical chlorine via van der Walls bonds has two equilibrium structures. These structures have IR active of harmonic vibrational frequencies. In one of these structures; Cl atom bonded to a particular H atom which has a single IR active of C-H asymmetric stretching vibration at 3428 cm-1. The other structure, in which Cl atom attached to both of H atoms (T- shape), predicted harmonic vibration at 3424 cm-1 for asymmetric C-H stretch. The rear geometrical structure is lower minimum energy than the former one by 11.78 KJ/mol. Finally, the barrier for the interconversion from one minimum to the other is also computed in this study.

Article Details

How to Cite
Media Ismael Sulaiman. (2020). Structure and Vibrational study of Entrance Channel of Monomer C2H2+ Cl via ab initio calculation. Tikrit Journal of Pure Science, 25(5), 83–87. https://doi.org/10.25130/tjps.v25i5.295
Section
Articles

References

[1] Merritt, J. M., Küpper, J., & Miller, R. E. (2005). Entrance channel X–HF (X= Cl, Br and I) complexes studied by high-resolution infrared laser spectroscopy in helium nanodroplets. Physical Chemistry Chemical Physics, 7(1), 67-78. [2] Murray, C., & Orr-Ewing*, A. J. (2004). The dynamics of chlorine-atom reactions with polyatomic organic molecules. International Reviews in Physical Chemistry, 23(3), 435-482. [3] Lester, M. I., Pond, B. V., Marshall, M. D., Anderson, D. T., Harding, L. B., & Wagner, A. F. (2001). Mapping the OH+ CO→ HOCO reaction pathway through IR spectroscopy of the OH–CO reactant complex. Faraday discussions, 118, 373-385. [4] Neumark, D. M. (2002). Spectroscopy of reactive potential energy surfaces. PhysChemComm, 5(11), 76-81. [5] Takayanagi, T., & Wada, A. (2001). Theoretical calculations for the prereaction processes of the D⋯ HF and H⋯ DF van der Waals molecules. Chemical physics letters, 338(2-3), 195-200. [6] Takayanagi, T., & Kurosaki, Y. (1998). van der waals resonances in cumulative reaction probabilities for the F+ H 2, D 2, and HD reactions. The Journal of chemical physics, 109(20), 8929-8934. [7] Balucani, N. et al. (2000). Dynamics of the Cl+ D2 reaction: a comparison of crossed molecular beam experiments with quasi-classical trajectory calculations on a new ab initio potential energy surface. Chemical Physics Letters, 328(4-6), 500-508. [8] Manthe, U., Bian, W., & Werner, H. J. (1999). Quantum-mechanical calculation of the thermal rate constant for the H2+ Cl→ H+ HCl reaction. Chemical physics letters, 313(3-4), 647-654. [9] Skouteris, D., Manolopoulos, D. E., Bian, W., Werner, H. J., Lai, L. H., & Liu, K. (1999). van der Waals Interactions in the Cl + HD Reaction. Science, 286(5445), 1713-1716. [10] Skouteris, D., Manolopoulos, D. E., Bian, W., Werner, H. J., Lai, L. H., & Liu, K. (1999). van der Waals Interactions in the Cl+ HD Reaction. Science, 286(5445), 1713-1716. [11] Metz, R. B., Weaver, A., Bradforth, S. E., Kitsopoulos, T. N., & Neumark, D. M. (1990). Probing the transition state with negative ion photodetachment: the chlorine atom+ hydrogen chloride and bromine atom+ hydrogen bromide reactions. Journal of Physical Chemistry, 94(4), 1377-1388. [12] Dubernet, M. L., & Hutson, J. M. (1994). Atom-molecule van der Waals complexes containing open-shell atoms. 2. The bound states of Cl-HCl. The Journal of Physical Chemistry, 98(23), 5844-5854. [13] Schatz, G. C., McCabe, P., & Connor, J. N. (1998). Quantum scattering studies of spin–orbit effects in the Cl (2 P)+ HCl→ ClH+ Cl (2 P) reaction. Faraday Discussions, 110, 139-157. [14] Jungwirth, P., Žďánská, P., & Schmidt, B. (1998). Librational control of photochemical reactions in small clusters. The Journal of Physical Chemistry A, 102(37), 7241-7244. [15] Neumark, D. L. M. (1992). Transition state spectroscopy of bimolecular chemical reactions. Annual Review of Physical Chemistry, 43(1), 153-176. [16] Imura, K. et al. (2000). Tunneling motion in (HCl) 2 hydrogen-bonded dimer probed by electrostatic hexapole and Doppler-selected TOF measurement for the internal energy distribution of [ClHCl]. Journal of Molecular Structure, 552(1-3), 137-145. [17] Hunt, R. D., & Andrews, L. (1988). Infrared spectra of diatomic halogen complexes with hydrogen fluoride in solid argon and neon. The Journal of Physical Chemistry, 92(13), 3769-3774. [18] Ault, B. S. (1978). A search for the HF2 and HClF neutral free radicals isolated in argon matrices. The Journal of Chemical Physics, 68(9), 4012-4016. [19] Andrews, L., & Hunt, R. D. (1988). Infrared spectra of ClF, Cl2, and Cl complexes with HCl in solid argon. The Journal of chemical physics, 89(6), 3502-3504. [20] Zhu, L., Chen, W., Hase, W. L., & Kaiser, E. W. (1993). Comparison of models for treating angular momentum in RRKM calculations with vibrator transition states: Pressure and temperature dependence of chlorine atom+ acetylene association. The Journal of Physical Chemistry, 97(2), 311-322.. [21] Bramley, M. J., Carter, S., Handy, N. C., & Mills, I. M. (1993). A refined quartic forcefield for acetylene: Accurate calculation of the vibrational spectrum. Journal of Molecular Spectroscopy, 157(2), 301-336. [22] Jonas, D. M., Solina, S. A. B., Rajaram, B., Silbey, R. J., Field, R. W., Yamanouchi, K., & Tsuchiya, S. (1993). Intramolecular vibrational redistribution of energy in the stimulated emission pumping spectrum of acetylene. The Journal of chemical physics, 99(10), 7350-7370. [23] Temsamani, M. A., & Herman, M. (1995). The vibrational energy levels in acetylene 12C2H2: Towards a regular pattern at higher energies. The Journal of chemical physics, 102(16), 6371-6384. [24] Temsamani, M. A., Herman, M., Solina, S. A., O’Brien, J. P., & Field, R. W. (1996). Highly vibrationally excited 12C2H2 in the X̃ 1Σ+ g state: Complementarity of absorption and dispersed fluorescence spectra. The Journal of chemical physics, 105(24), 11357-11359. [25] Temsamani, M. A., & Herman, M. (1996). The vibrational energy pattern in 12C2H2 (II): vibrational clustering and rotational structure. The Journal of chemical physics, 105(4), 1355-1362. [26] CAMPARGUE, B. A. (1997). The absorption spectrum of 12C2H2 between 12800 and 18500cm− 1. Molecular Physics, 90(5), 793-806. [27] YANG, B. S. F., Biennier, L., & Campargue, A. (1997). The absorption spectrum of 12C2H2 between

12800 and 18500cm −1 II. Rotational analysis. Molecular Physics, 90(5), 807-816. [28] Zhang, L., Truhlar, D. G., & Sun, S. (2020). Association of Cl with C2H2 by unified variable-reaction-coordinate and reaction-path variational transition-state theory. Proceedings of the National Academy of Sciences, 117(11), 5610-5616 [29] Tang, Z., Gui, X., & Fei, W. (2011). Utilization of molecular simulation software Gaussian 03 to design absorbent for CO2c apture. Procedia Engineering, 12, 87-92. [30] Malloum, A., Fifen, J. J., & Conradie, J. (2020). Theoretical infrared spectrum of the ethanol hexamer. International Journal of Quantum Chemistry, 120(13), e26234.

[31] T. Shimanouc. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-3935 (1972) . [32] Capurso, M., Gette, R., Radivoy, G., & Dorn, V. (2019). The Sn2 Reaction: A Theoretical-Computational Analysis of a Simple and Very Interesting Mechanism. In Multidisciplinary Digital Publishing Institute Proceedings, 41 (1) 81. [33] Sulaiman, M. I., Yang, S., & Ellis, A. M. (2017). Infrared spectroscopy of methanol and methanol/water clusters in helium nanodroplets: The OH stretching region. The Journal of Physical Chemistry A, 121(4), 771-776. [34] Sulaiman, M. I.(2018). Infrared Laser Spectroscopy of Molecules in Helium Nanodroplets. Ph.D. thesis., Leicester University, United Kingdom: 200 pp.